10 класс. Алгебра
 
математика-повторение Закрепляем и систематизируем знания основ школьной математики.
Рубрика "10 класс. Алгебра"

10.3.0. Вычисление производных

На этом занятии мы будем учиться применять формулы и правила дифференцирования.

Примеры. Найти производные функций.

1. y=x7+x5-x4+x3-x2+x-9. Применяем правило I, формулы 4, 2 и 1. Получаем:

y’=7x6+5x4-4x3+3x2-2x+1.

2. y=3x6-2x+5. Решаем аналогично, используя те же формулы и формулу 3.

y’=3∙6x5-2=18x5-2.

Применяем правило I,  формулы 3, 5 и 6 и 1.

 

 Применяем правило IV, формулы 5 и 1.

 

В пятом примере по правилу I производная суммы равна сумме производных,  а производную 1-го слагаемого мы только что находили (пример 4), поэтому, будем находить производные  2-го и 3-го слагаемых, а для 1-го слагаемого можем сразу писать результат.

Дифференцируем 2-ое и 3-е слагаемые по формуле 4. Для этого преобразуем корни третьей и четвертой степеней в знаменателях к степеням с отрицательными показателями, а затем, по 4 формуле, находим производные степеней.

Посмотрите на данный пример и полученный результат. Уловили закономерность? Хорошо. Это означает, что мы получили новую формулу и можем добавить ее в нашу таблицу производных.

Решим шестой пример и выведем еще одну  формулу.

Используем правило IV и формулу 4. Получившиеся дроби сократим.

Смотрим на данную функцию и на ее производную. Вы, конечно, поняли закономерность и готовы назвать формулу:

Учим новые формулы!

 

10.2.6. Решение тригонометрических неравенств. Часть 6

На предыдущих занятиях мы решали тригонометрические неравенства следующих видов:

На этом занятии мы будем решать неравенства вида tgt>a.

Будем применять следующий алгоритм решения (как на прошлом уроке):

1. Если аргумент — сложный (отличен от х), то заменяем его на t.

2. Строим в одной координатной плоскости tOy графики функций y=tgt  и y=a.

3. Находим промежуток значений t,  при которых тангенсоида располагается выше прямой у=а. Левая граница этого промежутка arctg a, а правая всегда (π/2)

4. Записываем двойное неравенство для аргумента t, учитывая наименьший период тангенса Т=π (будет между абсциссами arctg a и (π/2) ).

5. Делаем обратную замену (возвращаемся к первоначальному аргументу) и выражаем значение х из двойного неравенства, записываем ответ в виде числового промежутка.

Первое неравенство.

Решение.

Разделим обе части неравенства на 3. Сделаем замену данной переменной на t. Тогда получим более простое неравенство.

Определим промежуток значений переменной t, при которых неравенство будет верным. Это абсциссы тех точек графика функции y=tg t, которые лежат выше нашей прямой. Покажем штриховкой эти значения t. Запишем найденные значения аргумента t в виде двойного неравенства.

Второе неравенство.

Решение. 

Преобразуем левую часть неравенства по формуле tg (α+β) и получим более простое неравенство. Делаем замену переменной.

Определяем искомый промежуток значений переменной t. Затем выразим х и запишем ответ в виде промежутка. Учтем, что неравенство нестрогое, но что тангенса (π/2) не существует.

Третье неравенство.

Решение.

Применяем правило для формул приведения:

1) перед приведенной функцией ставят знак приводимой; 2) если в записи аргумента (π/2) взято нечетное число раз, то функцию меняют на кофункцию.

Наш аргумент находится в 3-ей четверти, а котангенс в 3-ей четверти имеет знак «плюс», поэтому, знак приведенной функции не поменяется. В записи данного аргумента (π/2) взято 3 раза (нечетное число), поэтому функцию котангенс поменяем на кофункцию — тангенс.

Теперь данное неравенство приняло вид: tgt≥1. Построим графики функций y=tgt и у=1. Определим промежуток значений аргумента t, при которых неравенство tgt≥1 будет верным. Ответ запишем в виде промежутка. Неравенство у нас нестрогое, но правый конец промежутка не входит в решение неравенства, так как тангенса (π/2) не существует.

Подробные решения этих неравенств смотрите в видео: «10.2.6. Решение тригонометрических неравенств. Часть 6

Дорогие друзья! Мы решили неравенства с тангенсом графическим способом, но, конечно, существует и более короткое решение — по формулам.

Если tgt<a, то (- π/2) + πn < t < arctg a + πn, где nєZ.

Если tgt>a, то  arctg a + πn < t < (π/2) + πn,  где nєZ.

Выучите эти формулы, и вы будете решать тригонометрические неравенства с тангенсом быстрее!

10.2.5. Решение тригонометрических неравенств. Часть 5

На предыдущих занятиях мы решали графическим способом тригонометрические неравенства вида:

На этом занятии мы решим три неравенства вида: tgt<a.

Составим алгоритм решения.

1. Если аргумент — сложный (отличен от х), то заменяем его на t.

2. Строим в одной координатной плоскости tOy графики функций y=tgt  и y=a.

3. Находим промежуток значений t,  при которых тангенсоида располагается ниже прямой у=а. Левая граница этого промежутка всегда (-π/2), а правая arctg a

4. Записываем двойное неравенство для аргумента t, учитывая период тангенса Т=π (будет между абсциссами(-π/2) и  arctg a).

5. Делаем обратную замену (возвращаемся к первоначальному аргументу) и выражаем значение х из двойного неравенства, записываем ответ в виде числового промежутка.

Решение тригонометрических неравенств графическим способом надежно страхует нас от ошибок только в том случае, если мы грамотно построим графики.

Первое неравенство.

Построим графики функций y=tgx и у=1. Подробно рассмотрим построение тангенсоиды. Приготовим координатную плоскость хОу следующим образом:

единичный отрезок равен двум клеткам; так как значение π≈3,14, то π на горизонтальной оси Ох будет изображаться шестью клетками; половина π (это π/2) — тремя клетками. Одна клетка — это π/6; полторы клетки — это π/4; две клетки будут соответствовать аргументу π/3.

Мы знаем, что тангенс 90° не существует, а так как функция тангенса периодическая с наименьшим периодом, равным π, то не существует тангенс (90°+πn). Учтем это при построении графика и проведем две асимптоты: х= - π/2 и х=π/2.

Итак, в промежутке от - π/2 до π/2 тангенс будет «пробегать» все свои значения. Пользуясь значениями тангенса некоторых углов и свойством нечетности функции тангенса (график будет симметричен относительно начала координат), строим точки в приготовленной координатной плоскости, через которые и проведем тангенсоиду.

 

Построим прямую у=1.

Проведем ее параллельно оси Ох, выше на один единичный отрезок (выше на 2 клетки).

Прямая у=1 пересекает тангенсоиду в точке с координатами (π/4; 1).

 

Определяем промежуток значений х, при которых неравенство будет верным, т.е. внутри которого тангенсоида располагается ниже прямой у=1. Учтем, что неравенство нестрогое, значит, правый конец промежутка (π/4) входит во множество решений неравенства. Записываем решение в виде двойного неравенства. Ответ запишем в виде промежутка.

Второе неравенство.

Отметим промежуток значений t, при которых точки тангенсоиды находятся ниже точек прямой у=1. Запишем этот промежуток в виде двойного неравенства. Затем перезапишем его для первоначального аргумента и выразим х. Ответ запишем в виде промежутка.

Третье неравенство.

Отмечаем промежуток значений t, при которых неравенство верно. У нас нестрогое неравенство, значит, правый конец промежутка значений t также является решением неравенства. Возвращаемся к первоначальному аргументу и выражаем х. Ответ записываем в виде промежутка значений переменной х.

Смотреть видео: «10.2.5. Решение тригонометрических неравенств. Часть 5.»

Неравенства вида tgt<a можно решать и без графиков, по соответствующей формуле.

Если tgt<a, то — (π/2) + πn < t < arctg a + πn, где nєZ.

10.2.4. Решение тригонометрических неравенств. Часть 4

На предыдущих трех занятиях по решению тригонометрических неравенств графическим способом мы рассмотрели неравенства вида:

Рассмотрим тригонометрические неравенства вида: cost>a.

Используем алгоритм решения, как в предыдущем уроке 10.2.3. Решение тригонометрических неравенств. Часть 3.

1. Если аргумент — сложный (отличен от х), то заменяем его на t.

2. Строим в одной координатной плоскости tOy графики функций y=cost  и y=a.

3. Находим такие две соседние точки пересечения графиков,  между которыми синусоида располагается выше прямой у=а. Находим абсциссы этих точек.

4. Записываем двойное неравенство для аргумента t, учитывая период косинуса (t будет между найденными абсциссами).

5. Делаем обратную замену (возвращаемся к первоначальному аргументу) и выражаем значение х из двойного неравенства, записываем ответ в виде числового промежутка.

Решение тригонометрических неравенств с помощью графиков надежно страхует нас от ошибок только в том случае, если мы грамотно построим синусоиду. (График функции y=cosx также называют синусоидой!) Построение синусоиды y=cosx  рассматривается подробно в предыдущем уроке 10.2.3. Решение тригонометрических неравенств. Часть 3.

Пример 1.

Далее, по алгоритму, определяем те значения аргумента t, при которых синусоида располагается выше прямой. Выпишем эти значения в виде двойного неравенства, учитывая периодичность функции косинуса, а затем вернемся к первоначальному аргументу х.

Пример 2.

Выделяем промежуток значений t, при которых синусоида находится выше прямой.

Записываем в виде двойного неравенства значения t, удовлетворяющих условию. Не забываем, что наименьший период функции y=cost равен . Возвращаемся к переменной х, постепенно упрощая все части двойного неравенства.

Ответ записываем в виде закрытого числового промежутка, так как неравенство было нестрогое.

Пример 3.

Нас будет интересовать промежуток значений t, при которых точки синусоиды будут лежать выше прямой.

Значения t запишем в виде двойного неравенства, перезапишем эти же значения для и выразим х. Ответ запишем в виде числового промежутка.

Смотрите видео: «10.2.4. Решение тригонометрических неравенств. Часть 4.»

И снова формула, которой вам следует воспользоваться на экзамене ЕНТ или ЕГЭ при решении тригонометрического неравенства вида cost>a.

Если  cost>a, (-1≤а≤1), то - arccos a + 2πn < t < arccos a + 2πn, nєZ.

Применяйте  формулы для решения тригонометрических неравенств, и вы  сэкономите время на экзаменационном тестировании.

10.2.3. Решение тригонометрических неравенств. Часть 3

На предыдущих двух занятиях по решению тригонометрических неравенств графическим способом мы рассмотрели решения неравенств вида:

Продолжаем решать тригонометрические неравенства графическим способом. Рассмотрим неравенства вида cost<a:

Составим алгоритм решения.

1. Если аргумент — сложный (отличен от х), то заменяем его на t.

2. Строим в одной координатной плоскости tOy графики функций y=cost  и y=a.

3. Находим такие две соседние точки пересечения графиков,  между которыми синусоида располагается ниже прямой у=а. Находим абсциссы этих точек.

4. Записываем двойное неравенство для аргумента t, учитывая период косинуса Т=2π (t будет между найденными абсциссами).

5. Делаем обратную замену (возвращаемся к первоначальному аргументу) и выражаем значение х из двойного неравенства, записываем ответ в виде числового промежутка.

Решение тригонометрических неравенств с помощью графиков надежно страхует нас от ошибок только в том случае, если мы грамотно построим синусоиду. (График функции y=cosx также называют синусоидой!)

Первое неравенство.

Преобразуем левую часть неравенства по формуле косинуса двойного аргумента:

Координатную плоскость готовим так же, как готовили для построения графика функции y=sinx. (10.2.1. Решение тригонометрических неравенств. Часть 1), т.е. единичный отрезок берем равным двум клеткам, тогда значение π изображаем равным шести клеткам и т.д. Вот так должна выглядеть координатная плоскость для построения синусоид:

Воспользуемся таблицей значений косинусов некоторых углов:

 а также свойствами: графиков четных функций, непрерывностью и периодичностью функции косинуса. Отмечаем точки:

Проводим через эти точки кривую — график функции y=cosx.

Определяем промежуток значений х, при которых точки синусоиды лежат ниже точек прямой.

Учтем периодичность функции косинуса и запишем в виде двойного неравенства решение данного неравенства:

Второе неравенство.

Находим абсциссы точек пересечения графиков, между которыми график косинуса лежит ниже прямой.

Концы этого промежутка тоже являются решениями неравенства, так как неравенство нестрогое.

Запишем решение в виде двойного неравенства  для переменной t.

Подставим вместо t первоначальное значение аргумента.

Выразим х.

Ответ запишем в виде промежутка.

Третье неравенство.

Смотрите видео: «10.2.3. Решение тригонометрических неравенств. Часть 3.»

А теперь формула, которой вам следует воспользоваться на экзамене ЕНТ или ЕГЭ при решении тригонометрического неравенства вида cost<a.

Если  cost<a, (-1≤а≤1), то arccos a + 2πn < t < 2π — arccos a + 2πn, nєZ.

Примените эту формулу для решения рассмотренных в этой статье неравенств, и вы получите ответ гораздо быстрее и безо всяких графиков!    

10.2.2. Решение тригонометрических неравенств. Часть 2

На прошлом занятии «10.2.1. Решение тригонометрических неравенств. Часть 1» мы решили три неравенства вида sint<a. На этом уроке мы рассмотрим три неравенства вида sint>a, где -1≤а≤1.

Составим алгоритм решения.

1. Если аргумент — сложный (отличен от х), то заменяем его на t.

2. Строим в одной координатной плоскости tOy графики функций y=sint  и y=a.

3. Находим такие две соседние точки пересечения графиков (поближе к оси Оу), между которыми синусоида располагается выше прямой у=а. Находим абсциссы этих точек.

4. Записываем двойное неравенство для аргумента t, учитывая период синуса (t будет между найденными абсциссами).

5. Делаем обратную замену (возвращаемся к первоначальному аргументу) и выражаем значение х из двойного неравенства, записываем ответ в виде числового промежутка.

Решаем первое неравенство:

Построение графика синуса мы рассмотрели подробно в занятии  «10.2.1. Решение тригонометрических неравенств. Часть 1».

Учитывая периодичность функции синуса, запишем двойное неравенство для значений аргумента t, удовлетворяющий последнему неравенству. Вернемся к первоначальной переменной. Преобразуем полученное двойное неравенство и выразим переменную х. Ответ запишем в виде промежутка.

Решаем второе неравенство:

При решении второго неравенства нам пришлось преобразовать левую часть данного неравенства по формуле синуса двойного аргумента, чтобы получить неравенство вида: sint≥a. Далее  мы следовали алгоритму.

Решаем третье неравенство:

Смотрите видео: «10.2.2. Решение тригонометрических неравенств. Часть 2.»

Дорогие выпускники и абитуриенты! Имейте ввиду, что такие способы решения тригонометрических неравенств, как приведенный выше графический способ и, наверняка, вам известный, способ решения с помощью единичной тригонометрической окружности (тригонометрического круга)  применимы лишь на первых этапах изучения раздела тригонометрии «Решение тригонометрических уравнений и неравенств». Думаю, вы припомните, что и простейшие тригонометрические уравнения вы вначале решали с помощью графиков или круга. Однако, сейчас вам не придет в голову решать таким образом тригонометрические уравнения. А как вы их решаете? Правильно, по формулам. Вот и тригонометрические неравенства следует решать по формулам, тем более, на тестировании, когда дорога каждая минута. Итак, решите три неравенства этого урока по соответствующей формуле.

Если sint>a, где  -1≤a≤1, то  arcsin a + 2πn < t < π — arcsin a + 2πn, nєZ.

Учите формулы! 

 

10.2.1. Решение тригонометрических неравенств. Часть 1

На этом и последующих занятиях мы будем решать графическим способом тригонометрические неравенства одного какого-то вида. Сегодня мы решим три тригонометрических неравенства вида sint<a. Вот они:

Составим алгоритм решения.

1. Если аргумент — сложный (отличен от х), то заменяем его на t.

2. Строим в одной координатной плоскости tOy графики функций y=sint  и y=a.

3. Находим такие две соседние точки пересечения графиков (поближе к оси Оу), между которыми синусоида располагается ниже прямой у=а. Находим абсциссы этих точек.

4. Записываем двойное неравенство для аргумента t, учитывая период синуса (t будет между найденными абсциссами).

5. Делаем обратную замену (возвращаемся к первоначальному аргументу) и выражаем значение х из двойного неравенства, записываем ответ в виде числового промежутка.

Решение тригонометрических неравенств с помощью графиков надежно страхует нас от ошибок только в том случае, если мы грамотно построим синусоиду.

Для построения графика функции y=sinx выберем единичный отрезок, равный двум клеткам. Тогда по горизонтальной оси Ох значение π (≈3,14) составит шесть клеток. Рассчитываем остальные значения аргументов (в клетках).

Вот как будет выглядеть координатная плоскость.

Эти точки мы взяли из таблицы значений синуса.  Также используем свойство нечетности функции y=sinx (sin (-x)=-sinx), периодичность синуса (наименьший период Т=2π) и известное равенство: sin (π-x)=sinx. Проводим синусоиду

. Проводим прямую.

Теперь нам предстоит определить такие две точки пересечения синусоиды и прямой, между которыми синусоида располагается ниже, чем прямая. Крайняя точка справа определена, абсцисса ближайшей искомой отстоит от начала отсчета влево на 8 клеток. Построим ее и определим.

Между этими (выделенными) значениями аргумента и находится та часть синусоиды, которая лежит ниже данной прямой, а значит, промежуток между этими выделенными точками удовлетворяет данному неравенству. Учтем период синуса, запишем результат в виде двойного неравенства, а ответ в виде числового промежутка.

Решим второе неравенство.

Синусоиду строим так же, а прямая будет параллельна оси Оt и отстоять от нее на 1 клетку вниз.

Определяем промежуток, внутри которого точки синусоиды лежат ниже прямой.

Записываем промежуток значений введенной переменной t. Возвращаемся к первоначальному значению аргумента (). Все части двойного неравенства делим на 2 и определяем промежуток значений х. Записываем ответ в виде числового промежутка.

Аналогично решаем и третье неравенство.

В выделенном промежутке синусоида располагается ниже прямой, поэтому, учитывая периодичность функции синуса, запишем в виде двойного неравенства значения t. Затем вместо t подставим первоначальный аргумент синуса и будем выражать х из полученного двойного неравенства.

Ответ запишем в виде числового промежутка.

 

Смотрите видео: 10.2.1. Решение тригонометрических неравенств вида: sinx<a  графическим способом.

И, напоследок: знаете ли вы, что математика — это определения, правила и ФОРМУЛЫ?!

Конечно, знаете! И самые любознательные, изучив эту статью и просмотрев видео, воскликнули: «Как долго и сложно! А нет ли формулы, позволяющей решать такие неравенства безо всяких графиков и окружностей?» Да, разумеется, есть!

ДЛЯ РЕШЕНИЯ НЕРАВЕНСТВ ВИДА: sint<a (-1≤а≤1) справедлива формула:

— π — arcsin a + 2πn < t < arcsin a + 2πn,  nєZ.

Примените ее к рассмотренным примерам и вы получите ответ гораздо быстрее!

Вывод: УЧИТЕ ФОРМУЛЫ, ДРУЗЬЯ!

10.3.1. Уравнение касательной

Выведем уравнение касательной к графику функции y=f (x) в точке с абсциссой х0.  Для наглядности используем график из предыдущего урока 10.3. («Определение производной. Геометрический смысл производной») и выведем уравнение касательной МТ.

Так как точку М мы взяли произвольно, то должны получить уравнение касательной, которое будет справедливо для любой функции y=f (x), имеющей касательную в определенной точке с абсциссой х0.

Итак, любую прямую можно записать в виде y=kx+b, где k — угловой коэффициент прямой. Мы теперь знаем, что в качестве углового коэффициента можно взять f '(х0) — значение производной функции y=f (x) в точке с абсциссой х0. Эта точка является общей точкой для функции и для касательной МТ.

Таким образом, касательная МТ имеет вид: y=f '(х0)·x+b. Осталось определить значение b. Это мы сделаем просто: подставим координаты точки М в последнее равенство, т.е. вместо х запишем х0, а вместо у подставим f (х0). Получаем равенство:

f (х0) =f '(х0)·х0+b.

Отсюда b=f (х0)f '(х0)·х0. Подставляем это значение b в равенство:  y=f '(х0)·x+b. Тогда:

y =f '(х0)·х+f (х0) - f '(х0)·х0. Упростим.

y=f (х0)+(f '(х0)·х f '(х0)·х0)  или 

 y=f (х0)+f '(х0)(х х0).  Это и есть искомое уравнение касательной МТ.

Смотрите видео 10.3.1. Уравнение касательной.

Выполнить следующие задания.

1. Написать уравнение касательной к графику функции y=x2 в точке x0=3. Сделать чертеж.

Решение.

Запишем уравнение касательной к графику функции y=f (x) в точке с абсциссой x0 в общем виде:

y=f (x0) +f '(x0)(x-x0).

Находим значение данной функции в точке с данной абсциссой:

f (x0)=f (3)=32=9.

Находим производную f '(x)=(x2)'=2x и находим значение этой производной при х=3.

Тогда f '(x0)=f '(3)=2·3=6.

Подставим найденные значения

f (x0)=9 и f '(x0)=6 в уравнение касательной, получим:

y=9+6·(x-3);

y=9+6x-18;

y=6x-9 — искомое уравнение касательной.

Ответ: y=6x-9.

2. Написать уравнение касательной к графику функции

Решение.

Записываем общее уравнение касательной: y=f (x0) +f '(x0)(x-x0). Находим значение данной функции в точке х=1, получаем:

f (x0)=f (1) = 1. Найдем производную данной функции по формуле производной степени:

f '(x)=(x-2)=-2x-2-1=-2x-3.

Находим значение этой производной при х=1.

f '(x0)=f (1)=-2·(1)-3 =-2. Подставляем найденные значения в общее уравнение касательной:

y=1-2(x-1);

y=1-2x+2;

y=-2x+3 - искомое уравнение касательной.

Ответ: y=-2x+3.               

10.3. Производная и ее геометрический смысл

В координатной плоскости хОу рассмотрим график функции y=f (x). Зафиксируем точку М(х0; f (x0)). Придадим абсциссе х0 приращение Δх. Мы получим новую абсциссу х0+Δх. Это абсцисса точки N, а ордината будет равна f (х0+Δх). Изменение абсциссы повлекло за собой изменение ординаты. Это изменение называют приращение функции и обозначают Δy.

Δy=f (х0+Δх) — f (x0).  Через точки M и N проведем секущую MN, которая образует угол φ с положительным направлением оси Ох. Определим тангенс угла φ из прямоугольного треугольника MPN.

Пусть Δх стремится к нулю. Тогда секущая MN будет стремиться занять положение касательной МТ, а угол φ станет углом α. Значит, тангенс угла α есть предельное значение тангенса угла φ:

Определение производной. Предел отношения приращения функции к приращению аргумента, при стремлении последнего к нулю, называют производной функции в данной точке:

Геометрический смысл производной заключается в том, что численно производная функции в данной точке равна тангенсу угла, образованного касательной, проведенной через эту точку к данной кривой, и положительным направлением оси Ох:

Смотрите видео 10.3. Определение производной. Геометрический смысл производной.

Примеры.

1. Найти приращение аргумента и приращение функции y=x2, если начальное значение аргумента было равно 4, а новое  -4,01.

Решение.

Новое значение аргумента х=х0+Δx. Подставим данные: 4,01=4+Δх, отсюда приращение аргумента Δх=4,01-4=0,01. Приращение функции, по определению, равно разности между новым и прежним значениями функции, т.е. Δy=f (х0+Δх) - f (x0).  Так как у нас функция y=x2,  то Δу=(х0+Δx)2— (х0)2=(х0)2+2x· Δx+(Δx)2— (х0)2=2x· Δx+(Δx)2=

=2 · · 0,01+(0,01)2=0,08+0,0001=0,0801.

Ответ: приращение аргумента Δх=0,01; приращение функции Δу=0,0801.

Можно было приращение функции найти по-другому: Δy=y (х0+Δx) -y (х0)=у(4,01) -у(4)=4,012-42=16,0801-16=0,0801.

2. Найти угол наклона касательной к графику функции y=f (x) в точке х0, если f '(х0) = 1.

Решение.

Значение производной в точке касания х0 и есть значение тангенса угла наклона касательной (геометрический смысл производной). Имеем: f '(х0) = tgα = 1  → α = 45°,   так как  tg45°=1.

Ответ: касательная к графику данной функции образует с положительным направлением оси Ох угол, равный 45°.

3. Вывести формулу производной функции y=xn.

Смотрите видео: «10.3.0. Вывод формулы производной степени».

Дифференцирование — это действие нахождения производной функции.

При нахождении производных применяют формулы, которые были выведены на основании определения производной, так же,  как мы вывели формулу производной степени: (xn)' = nxn-1.

Вот эти формулы.     

Таблицу производных легче будет заучить, проговаривая словесные формулировки:

 

1. Производная постоянной величины равна нулю.

2. Икс штрих равен единице.

3. Постоянный множитель можно вынести за знак производной.

4. Производная степени равна произведению показателя этой степени на степень с тем же основанием, но показателем на единицу меньше.

5. Производная корня равна единице, деленной на два таких же корня.

6. Производная единицы, деленной на икс равна минус единице, деленной на икс в квадрате.

7. Производная синуса равна косинусу.

8. Производная косинуса равна минус синусу.

9. Производная тангенса равна единице, деленной на квадрат косинуса.

10. Производная котангенса равна минус единице, деленной на квадрат синуса.

Учим правила дифференцирования.

1. Производная алгебраической суммы равна алгебраической сумме производных слагаемых.

2. Производная произведения равна произведению производной первого множителя на второй плюс произведение первого множителя на производную второго.

3. Производная «у», деленного на «вэ» равна дроби, в числителе которой "у штрих умноженный на «вэ» минус «у, умноженный на вэ штрих», а в знаменателе — «вэ в квадрате».

4. Частный случай формулы 3.

Учим вместе!

 

Страница 1 из 11
Скайп-репетитор
ЕНТ в картинках
Instagram
Подготовка к ОГЭ и ЕГЭ
Instagram
Мои обучающие видео
Архивы
Репетиторство по математике
Наверх