6 класс. Математика
 
математика-повторение Закрепляем и систематизируем знания основ школьной математики.
Рубрика "6 класс. Математика"

6.6.1. Числовые неравенства

Если при сравнении чисел a и b разность a-b – положительное число, то a>b.

Если при сравнении чисел a и b разность a-b – отрицательное число, то a<b.

Если неравенства записываются знаками < или >, то их называют строгими неравенствами.

Если неравенства записывают знаками ≤ или ≥, то их называют нестрогими неравенствами.

Примеры.

1. Сравните числа а и b по их разности.

а) a-b=-7. Решение. Так как разность a-b – отрицательное число, то a<b.

б) a-b=4,5. Решение. Так как разность a-b – положительное число, то a>b.

в) a-b=0. Решение. Так как разность a-b  равна нулю, то a=b.

2. Сравните данные числа.

а) 0,099 и 0,1. Решение. Десятичные дроби сравниваются поразрядно: из двух чисел больше то, которое содержит больше единиц высшего разряда.

0,099 < 0,1, так как 0<1 (сравнили десятые доли чисел).

б) -5,43 и -5,6. Решение. -5,43 > -5,6, так как из двух отрицательных чисел больше то, модуль которого меньше.

так как из двух дробей с одинаковыми знаменателями больше та, числитель которой больше, а меньше та, числитель которой меньше.

так как из двух дробей с одинаковыми числителями больше та, знаменатель которой меньше, а меньше та, знаменатель которой больше.

Решение. Приведем дроби к общему знаменателю. Получаем:

Теперь сравниваем дроби с одинаковыми знаменателями. Получаем:

3. Записать в виде двойного неравенства:  6 < 12  и  12 < 15.

Решение.  6 < 12 < 15. Читают: двенадцать больше шести и меньше пятнадцати.

4. Выписать все целые числа, удовлетворяющие двойному неравенству:

— 4 ≤ х < 3. Решение: -4; -3; -2; -1; 0; 1; 2.

5. Задания для самостоятельного решения.

5.1 Сравните с нулем разность чисел а и b, если

а) a<b;  б) a>b; в) a=b.

5.2. Сравните данные числа.

а) -2,467 и -2,476; б) 8,98 и 8,899;

5.3. Выписать все целые числа, удовлетворяющие двойному неравенству:

а) -5 ≤ х < 1; б) -3 < x ≤ 3; в) 4 < x < 9;  г) -8 ≤ x ≤ -4.

Ответы.

5.1.а.   a-b<0;

5.1.б.   a-b>0;

5.1.в.   a-b=0.

5.2.а.   -2,467 > -2,476;

5.2.б.   8,98 > 8,899;

5.3.а    -5; -4; -3; -2; -1; 0;

5.3.б.   -2; -1; 0; 1; 2; 3;

5.3.в.    5; 6; 7; 8;

5.3.г.    -8; -7; -6; -5; -4.

6.5.1. Линейное уравнение с одной переменной

  •  Равенство с переменной называют уравнением.
  •  Решить уравнение – значит найти множество его корней. Уравнение может иметь один, два, несколько, множество корней или не иметь их вовсе.
  • Каждое значение переменной, при котором данное уравнение превращается в верное равенство, называется корнем уравнения.
  • Уравнения, имеющие одни и те же корни, называются равносильными уравнениями.
  •  Любое слагаемое уравнения можно перенести из одной части равенства в другую, изменив при этом знак слагаемого на противоположный.
  •  Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному уравнению.

Примеры.  Решить уравнение.

1. 1,5х+4 = 0,3х-2.

1,5х-0,3х = -2-4. Собрали слагаемые, содержащие переменную, в левой части равенства, а свободные члены – в правой части равенства. При этом применяли свойство: любое слагаемое уравнения можно перенести из одной части равенства в другую, изменив при этом знак слагаемого на противоположный.

1,2х = -6. Привели подобные слагаемые по правилу: чтобы привести подобные слагаемые, надо сложить их коэффициенты и полученный результат умножить на их общую буквенную часть (т.е. к полученному результату приписать их общую буквенную часть).

х = -6 : 1,2. Обе части равенства разделили на коэффициент при переменной, так как если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному уравнению.

х = -5. Делили по правилу деления десятичной дроби на десятичную дробь:

чтобы разделить число на десятичную дробь, нужно перенести запятые в делимом и делителе на столько цифр вправо, сколько их стоит после запятой в делителе, а затем выполнить деление на натуральное число:

6 : 1,2 = 60 : 12 = 5.

Ответ: 5.

2. 3(2х-9) = 4(х-4).

6х-27 = 4х-16. Раскрыли скобки, используя распределительный закон умножения относительно вычитания: чтобы разность двух чисел умножить на третье число, можно отдельно уменьшаемое и отдельно вычитаемое умножить на третье число, а затем из первого результата вычесть второй результат, т.е. (a-b) c = a c-b c.

6х-4х = -16+27. Собрали слагаемые, содержащие переменную, в левой части равенства, а свободные члены – в правой части равенства. При этом применяли свойство: любое слагаемое уравнения можно перенести из одной части равенства в другую, изменив при этом знак слагаемого на противоположный.

2х = 11. Привели подобные слагаемые по правилу: чтобы привести подобные слагаемые, надо сложить их коэффициенты и полученный результат умножить на их общую буквенную часть (т.е. к полученному результату приписать их общую буквенную часть).

х = 11 : 2. Обе части равенства разделили на коэффициент при переменной, так как если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному уравнению.

х = 5,5.

Ответ: 5,5.

3. 7х- (3+2х)=х-9.

7х-3-2х = х-9. Раскрыли скобки по правилу раскрытия скобок, перед которыми стоит знак «-»: если перед скобками стоит знак «-», то убираем скобки, знак «-» и записываем слагаемые, стоявшие в скобках, с противоположными знаками.

7х-2х-х = -9+3. Собрали слагаемые, содержащие переменную, в левой части равенства, а свободные члены – в правой части равенства. При этом применяли свойство: любое слагаемое уравнения можно перенести из одной части равенства в другую, изменив при этом знак слагаемого на противоположный.

4х = -6. Привели подобные слагаемые по правилу: чтобы привести подобные слагаемые, надо сложить их коэффициенты и полученный результат умножить на их общую буквенную часть (т.е. к полученному результату приписать их общую буквенную часть).

х = -6 : 4. Обе части равенства разделили на коэффициент при переменной, так как если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному уравнению.

х = -1,5.

Ответ: -1,5.

3 (х-5) = 7 12 — 4 (2х-11). Умножили обе части равенства на 12 – наименьший общий знаменатель для знаменателей данных дробей.

3х-15 = 84-8х+44. Раскрыли скобки, используя распределительный закон умножения относительно вычитания: чтобы разность двух чисел умножить на третье число, можно отдельно уменьшаемое и отдельно вычитаемое умножить на третье число, а затем из первого результата вычесть второй результат, т.е. (a-b) c = a c-b c.

3х+8х = 84+44+15. Собрали слагаемые, содержащие переменную, в левой части равенства, а свободные члены – в правой части равенства. При этом применяли свойство: любое слагаемое уравнения можно перенести из одной части равенства в другую, изменив при этом знак слагаемого на противоположный.

11х = 143. Привели подобные слагаемые по правилу: чтобы привести подобные слагаемые, надо сложить их коэффициенты и полученный результат умножить на их общую буквенную часть (т.е. к полученному результату приписать их общую буквенную часть).

х = 143 : 11. Обе части равенства разделили на коэффициент при переменной, так как если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному уравнению.

х = 13.

Ответ: 13.

5. Решить самостоятельно уравнения:

а) 3-2,6х = 5х+1,48;

б) 1,6 · (х+5) = 4 · (4,5-0,6х);

в) 9х- (6х+2,5) = — (х-5,5);

Ответы.

5а) 0,2; 5б) 2,5; 5в) 2; 5г) -1.

 

6.4.2. Раскрытие скобок. Приведение подобных слагаемых

1. Раскрытие скобок, перед которыми стоит знак «+» или не стоит никакого знака.

Если перед скобками стоит знак «+» или не стоит никакого знака, то убираем скобки, знак «+» и записываем слагаемые, стоявшие в скобках, без изменений.

Примеры. Раскрыть скобки.

1а) (-3х+4) = -3х+4;

1б) (2a-3b)+(-c-d) = 2a-3b-c-d;

1в) 7x+(-a-2b+5c-k) = 7x-a-2b+5c-k.

2. Раскрытие скобок, перед которыми стоит знак «-».

Если перед скобками стоит знак «-», то убираем скобки, знак «-» и записываем слагаемые, стоявшие в скобках, с противоположными знаками.

Примеры. Раскрыть скобки.

2а) — (4х-5) = -4х+5;

2б)  - (-2a+c) — (b-3d) = 2a-c-b+3d;

2в)  - (4k-m) — (-a+2b) = -4k+m+a-2b.

3. Слагаемые, имеющие одинаковую буквенную часть, называются подобными слагаемыми. Примеры подобных слагаемых: 5а и -а; 2с и -12с.

Числовой множитель, стоящий перед буквенным множителем, называют коэффициентом. Так, в выражении 5а коэффициент равен 5, а в выражении (-а) коэффициент равен (-1).

Нахождение алгебраической суммы подобных слагаемых называется приведением подобных слагаемых.

Чтобы привести подобные слагаемые, надо сложить их коэффициенты и полученный результат умножить на их общую буквенную часть (т.е. к полученному результату приписать их общую буквенную часть).

Примеры. Привести подобные слагаемые.

3а) 2а-7а+9а-6а = (2-7+9-6)а = -2а;

3б) -4m+6m-3m+4m = (-4+6-3+4) m = 3m;

3в) 5,2с-2,8с-6,4с+9с = (5,2-2,8-6,4+9)с = 5с.

4. В алгебраическом выражении могут быть различного вида подобные слагаемые. В этом случае подобные слагаемые подчеркиваются одинаковыми линиями.

Примеры. Привести подобные слагаемые.

4а) -4а+5с-11с-20а = (-4-20)а+(5-11)с = -24а-6с;

4б) 3,2х+5,6у-8х-3у = (3,2-8)х+(5,6-3)у = -4,8х+2,6у;

4в) 8m-3k+7m-2k+12k+13m = (8+7+13) m+(-3-2+12) k = 28m+7k.

5. Для преобразования алгебраических выражений с помощью раскрытия скобок используют распределительное свойство умножения: чтобы сумму чисел умножить на третье число, можно каждое слагаемое умножить на третье число и сложить результаты.

Примеры. Раскрыть скобки.

5а) 2 (4х-5у) = 2 4х+2 (-5) = 8х-10у;

5б) -3 (4а+7с) = -3 4а-3 7с = -12а-21с;

5в) -6 (-а+4с) = -6 (-а) -6 4с = 6а-24с.

6. Упростить алгебраическое выражение – это значит раскрыть скобки, выполнить указанные действия, привести подобные слагаемые.

Примеры. Упростить выражение.

6а) (3х+у) -2 (5х-у) = -10х+2у = -7х+3у;

6б) 3х(а+1,5) -4ах = 3ах+4,5х-4ах = 4,5х-ах;

6в) -6 (х+у)+3 (2х-у) = -6х-6у+6х-3у = -9у.

7. Примеры для самостоятельного решения. Упростить:

7а) 4 (5-3а) — (11-а);

7б) 2 (3х-у) -6 (5х+3у);

7в) -2а(3с+4)+6ас;

7г) 5 (а-2с+1) -4 (-3+3с-а);

7д) –х(2у+7)+7 (х-4ху).

Ответы.

7а) 9-11а;

7б) -24х-20у;

7в) -8а;

7г) 9а-22с+17;

7д) -30ху.

6.9.3. Решение систем линейных уравнений методом сложения.

Чтобы решить систему линейных уравнений с двумя переменными методом сложения, надо:

1) умножить левую и правую части одного или обоих уравнений на некоторое число так, чтобы коэффициенты при одной из переменных в уравнениях стали противоположными числами;

2) сложить почленно полученные уравнения и найти значение одной из переменных;

3) подставить найденное значение одной переменной в одно из данных уравнений и найти значение второй переменной.

Если в данной системе коэффициенты при одной переменной являются противоположными числами, то решение системы начнём сразу с пункта 2).

Примеры. Решить систему линейных уравнений с двумя переменными методом сложения.

Так как коэффициенты при у являются противоположными числами (-1 и 1), то решение начинаем с пункта 2). Складываем уравнения почленно и получим уравнение 8х = 24.  Вторым уравнением системы можно записать любое уравнение исходной системы.

 

Найдём х и подставим его значение во 2-ое уравнение.

 

Решаем 2–ое уравнение: 9-у = 14, отсюда у = -5.

Сделаем проверку. Подставим значения х = 3 и у = -5 в первоначальную систему уравнений.

Примечание. Проверку можно сделать устно и не записывать, если наличие проверки не оговорено в условии.

 

Ответ: (3; -5).

 

Если мы умножим 1-ое уравнение на (-2), то коэффициенты при переменной х станут противоположными числами:

Сложим эти равенства почленно.

Мы получим равносильную систему уравнений, в которой 1-ое уравнение есть сумма двух уравнений прежней системы, а 2-м уравнением системы мы запишем 1-ое уравнение исходной системы (обычно записывают уравнение с меньшими коэффициентами):

Находим у из 1-го уравнения и полученное значение подставляем во 2-ое.

 

Решаем последнее уравнение системы и получаем х = -2.

Ответ: (-2; 1).

Сделаем коэффициенты при переменной у противоположными числами. Для этого все члены 1-го уравнения умножим на 5, а все члены 2-го уравнения на 2.

Подставим значение х=4 во 2-ое уравнение.

· 4 — 5у = 27. Упростим: 12 — 5у = 27, отсюда -5у = 15, а у = -3.

Ответ: (4; -3).

6.9.2. Решение систем линейных уравнений методом подстановки

Для решения системы линейных уравнений с двумя переменными методом подстановки поступаем следующим образом:

1) выражаем одну переменную через другую в одном из уравнений системы (х через у или у через х);

2) подставляем полученное выражение в другое уравнение системы и получаем линейное уравнение с одной переменной;

3) решаем полученное линейное уравнение с одной переменной и находим значение этой переменной;

4) найденное значение переменной подставляем в выражение (1) для другой переменной и находим значение этой переменной.

Примеры. Решить методом подстановки систему линейных уравнений.

Выразим х через у из 1-го уравнения. Получим: х=7+у. Подставим выражение (7+у) вместо х во 2-ое уравнение системы.

Мы получили уравнение: 3·(7+у)+2у=16. Это уравнение с одной переменной у. Решаем его. Раскроем скобки: 21+3у+2у=16. Собираем слагаемые с переменной у в левой части, а свободные слагаемые — в правой. При переносе слагаемого из одной части равенства в другую меняем знак слагаемого на противоположный.

Получаем: 3у+2у=16-21. Приводим подобные слагаемые в каждой части равенства. 5у=-5. Делим обе части равенства на коэффициент при переменной. у=-5:5; у=-1. Подставляем это значение у в выражение х=7+у и находим х. Получаем: х=7-1; х=6. Пара значений переменных х=6 и у=-1 является решением данной системы.

Записывают: (6; -1). Ответ: (6; -1). Эти рассуждения удобно записывать так, как показано ниже, т.е. системы уравнений — слева друг под другом. Справа — выкладки, необходимые пояснения, проверка решения и пр.

 

6.4.1. Алгебраическое выражение

I.  Выражения, в которых наряду с буквами могут быть использованы числа, знаки арифметических действий и скобки, называются алгебраическими выражениями.

Примеры алгебраических выражений:

2m -n;     3·(2a + b);     0,24x;     0,3a -b · (4a + 2b);     a2– 2ab;

Так как букву в алгебраическом выражении можно заменить какими то различными числами, то букву называют переменной, а само алгебраическое выражение — выражением с переменной.

II. Если в алгебраическом выражении буквы (переменные) заменить их значениями и выполнить указанные действия, то полученное в результате число называется значением алгебраического выражения.

Примеры. Найти значение выражения:

1) a + 2b -c при a = -2; b = 10; c = -3,5.

2) |x| + |y| -|z| при x = -8; y = -5; z = 6.

Решение.

1) a + 2b -c при a = -2; b = 10; c = -3,5. Вместо переменных подставим их значения. Получим:

— 2+ 2 · 10- (-3,5) = -2 + 20 +3,5 = 18 + 3,5 = 21,5.

2) |x| + |y| -|z|  при x = -8; y = -5; z = 6. Подставляем указанные значения. Помним, что модуль отрицательного числа равен противоположному ему числу, а модуль положительного числа равен самому этому числу. Получаем:

|-8| + |-5| -|6| = 8 + 5 -6 = 7.

III. Значения буквы (переменной), при которых алгебраическое выражение имеет смысл, называют допустимыми значениями буквы (переменной).

Примеры. При каких значениях переменной выражение не имеет смысла?

Решение. Мы знаем, что на нуль делить нельзя, поэтому, каждое из данных выражений не будет иметь смысла при том значении буквы (переменной), которая обращает знаменатель дроби в нуль!

В примере 1) это значение а = 0. Действительно, если вместо а подставить 0, то нужно будет число 6 делить на 0, а этого делать нельзя. Ответ: выражение 1) не имеет смысла при а = 0.

В примере 2) знаменатель х — 4 = 0 при х = 4, следовательно, это значение х = 4 и нельзя брать. Ответ: выражение 2) не имеет смысла при х = 4.

В примере 3) знаменатель х + 2 = 0 при х = -2. Ответ: выражение 3) не имеет смысла при х = -2.

В примере 4) знаменатель 5 -|x| = 0 при  |x| = 5. А так как |5| = 5 и |-5| = 5, то нельзя брать х = 5 и х = -5. Ответ: выражение 4) не имеет смысла при х = -5 и при х = 5.
IV. Два выражения называются тождественно равными, если при любых допустимых значениях переменных соответственные значения этих выражений равны.

Пример: 5 (a – b) и 5a – 5b тожественно равны, так как равенство 5 (a – b) = 5a – 5b будет верным при любых значениях a и b. Равенство 5 (a – b) = 5a – 5b есть тождество.

Тождество – это равенство, справедливое при всех допустимых значениях входящих в него переменных. Примерами уже известных вам тождеств являются, например,  свойства сложения и умножения, распределительное свойство.

Замену одного выражения другим, тождественно равным ему выражением, называют тождественным преобразованием или просто преобразованием выражения. Тождественные преобразования выражений с переменными выполняются на основе свойств действий над числами.

Примеры.

a) преобразуйте выражение в тождественно равное, используя распределительное свойство умножения:

1) 10·(1,2х + 2,3у);    2) 1,5·(a -2b + 4c);  3) a·(6m -2n + k).

Решение. Вспомним распределительное свойство (закон) умножения:

(a+b)·c=a·c+b·c (распределительный закон умножения относительно сложения: чтобы сумму двух чисел умножить на третье число, можно каждое слагаемое умножить на это число и полученные результаты сложить).
(а-b)·c=a·с-b·c (распределительный закон умножения относительно вычитания: чтобы разность двух чисел умножить на третье число, можно умножить на это число уменьшаемое и вычитаемое отдельно и из первого результата вычесть второй).

1) 10·(1,2х + 2,3у) = 10 · 1,2х + 10 · 2,3у = 12х + 23у.

2) 1,5·(a -2b + 4c) = 1,5а -3b + 6c.

3) a·(6m -2n + k) = 6am -2an +ak.

б) преобразуйте выражение в тождественно равное, используя переместительное и сочетательное  свойства (законы) сложения:

4) х + 4,5 +2х + 6,5;      5) (3а + 2,1) + 7,8;      6) 5,4с -3 -2,5 -2,3с.

Решение. Применим законы (свойства) сложения:

a+b=b+a (переместительный: от перестановки слагаемых сумма не меняется).
(a+b)+c=a+(b+c) (сочетательный: чтобы к сумме двух слагаемых прибавить третье число, можно к первому числу прибавить сумму второго и третьего).

4) х + 4,5 +2х + 6,5 = (х + 2х) + (4,5 + 6,5) = 3х + 11.

5) (3а + 2,1) + 7,8 = 3а + (2,1 + 7,8) = 3а + 9,9.

6) 6) 5,4с -3 -2,5 -2,3с = (5,4с -2,3с) + (-3 -2,5) = 3,1с -5,5.

в) преобразуйте выражение в тождественно равное, используя переместительное и сочетательное  свойства (законы) умножения:

7) 4 · х · (-2,5);      8) -3,5 · 2у · (-1);      9) 3а · (-3) · 2с.

Решение. Применим законы (свойства) умножения:

a·b=b·a (переместительный: от перестановки множителей произведение не меняется).
(a·b)·c=a·(b·c) (сочетательный: чтобы произведение двух чисел умножить на третье число, можно первое число умножить на произведение второго и третьего).

7) 4 · х · (-2,5) = -4 · 2,5 · х = -10х.

8 ) -3,5 · 2у · (-1) = 7у.

9) 3а · (-3) · 2с = -18ас.

Если алгебраическое выражение дано в виде сократимой дроби, то пользуясь правилом сокращения дроби его можно упростить, т.е. заменить тождественно равным ему более простым выражением.

Примеры. Упростите, используя сокращение дробей.

Решение. Сократить дробь — это значит разделить ее числитель и знаменатель на одно и то же число (выражение), отличное от нуля. Дробь 10) сократим на 3b; дробь 11) сократим на а и дробь 12) сократим на 7n. Получаем:

Алгебраические выражения применяют для составления формул.

Формула – это алгебраическое выражение, записанное в виде равенства и выражающее зависимость между двумя или несколькими переменными. Пример: известная вам формула пути s=v·t  (s — пройденный путь, v — скорость, t — время). Вспомните, какие еще формулы вы знаете.

 

6.3.4. Как записать число в виде десятичной дроби

Чтобы рациональное число m/n записать в виде десятичной дроби, нужно числитель разделить на знаменатель. При этом частное записывается  конечной или бесконечной десятичной дробью.

Пример 1. Записать данное число в виде десятичной дроби.

Решение. Разделим в столбик числитель каждой дроби на ее знаменатель: а) делим 6 на 25; б) делим 2 на 3; в) делим 1 на 2, а затем получившуюся дробь припишем к единице — целой части данного смешанного числа.

Несократимые обыкновенные дроби, знаменатели которых не содержат других простых делителей, кроме 2 и 5, записываются конечной десятичной дробью.

В примере 1 в случае а) знаменатель 25=5·5; в случае в) знаменатель равен 2, поэтому, мы получили конечные десятичные дроби 0,24 и 1,5. В случае б) знаменатель равен 3, поэтому результат нельзя записать в виде конечной десятичной дроби.

А можно ли без деления в столбик обратить в десятичную дробь такую обыкновенную дробь, знаменатель которой не содержит других делителей, кроме 2 и 5? Разберемся! Какую дробь называют десятичной и записывают без дробной черты? Ответ: дробь со знаменателем 10; 100; 1000 и т.д. А каждое из этих чисел — это произведение равного количества «двоек» и «пятерок». На самом деле: 10=2·5; 100=2·5·2·5; 1000=2·5·2·5·2·5 и т.д.

Следовательно, знаменатель несократимой обыкновенной дроби нужно будет представить в виде произведения «двоек» и «пятерок», а затем домножить на 2 и (или) на 5 так, чтобы «двоек» и «пятерок» стало поровну. Тогда  знаменатель дроби будет равен 10 или 100 или 1000 и т.д. Чтобы значение дроби не изменилось — числитель дроби умножим на то же число, на которое умножили знаменатель.

Пример 2. Представить в виде десятичной дроби следующие обыкновенные дроби:

Решение. Каждая из данных дробей является несократимой.  Разложим знаменатель каждой дроби на простые множители.

20=2·2·5. Вывод: не хватает одной «пятерки».

8=2·2·2.  Вывод: не хватает трех «пятерок».

25=5·5. Вывод: не хватает двух «двоек».

Замечание. На практике чаще не используют разложение знаменателя на множители, а просто задаются вопросом: на сколько нужно умножить знаменатель, чтобы в результате получилась единица с нулями (10 или 100 или 1000 и т.д.). А затем на это же число умножают и числитель.

Так, в случае  а) (пример 2) из числа 20 можно получить 100 умножением на 5, поэтому, на 5 нужно умножить числитель и знаменатель.

В случае б) (пример 2) из числа 8 число 100 не получится, но получится число 1000 умножением на 125. На 125 умножается и числитель (3) и знаменатель (8) дроби.

В случае в) (пример 2) из 25 получится 100, если умножить на 4. Значит, и числитель 8 нужно умножить на 4.

Бесконечная десятичная дробь, у которой одна или несколько цифр неизменно повторяются в одной и той же последовательности, называется периодической десятичной дробью. Совокупность повторяющихся цифр называется периодом этой дроби. Для краткости период дроби записывают один раз, заключая его в круглые скобки.

В случае б) (пример 1) повторяющаяся цифра одна и равна 6. Поэтому, наш результат 0,66... запишется так: 0,(6). Читают: нуль целых, шесть в периоде.

 Если между запятой и первым периодом есть одна или несколько не повторяющихся цифр, то такая периодическая дробь называется смешанной периодической дробью.

Несократимая обыкновенная дробь, знаменатель которой вместе с другими множителями содержит множитель 2 или 5, обращается в смешанную периодическую дробь.

Пример 3. Записать в виде десятичной дроби числа:

Любое рациональное число можно записать в виде бесконечной периодической десятичной дроби.

Пример 4. Записать в виде бесконечной периодической дроби числа:

Решение.

6.3.3. Деление рациональных чисел

Деление отрицательных чисел.

Частное двух отрицательных чисел есть число положительное. Модуль частного равен частному модулей делимого и делителя.

Так как частное двух положительных чисел — это тоже число положительное, то делаем ВЫВОД:

Частное двух чисел с одинаковыми знаками есть число положительное. Модуль частного равен частному модулей делимого и делителя.

Пример 1. Выполнить деление (устно):

а) -24:(-10); б) -370: (-1000); в) -253: (-11); г) -18,72: (-6).

Решение. Знак результата «+» (по  правилу деления отрицательных чисел). В примерах а) и б) используем правило деления числа на 10, 100, 1000 и т. д. Если забыли — смотрите здесь. В примере в) вспомните, как умножается двузначное число на 11 (цифры двузначного числа раздвигаются и между ними ставится число, равное сумме двух крайних цифр).

а) -24:(-10)=2,4; б) -370: (-1000)=0,37; в) -253: (-11)=23; г) -18,72: (-6)=3,12.

Пример 2. Вычислить:

Решение. По правилу деления отрицательных чисел результат будет положительным числом. Модуль частного в примерах а) и б) вычисляем по правилу деления на десятичную дробь. Повторить это можно здесь. В примерах в) и г)  вначале обращаем смешанные числа в неправильные дроби, а затем используем правило деления обыкновенных дробей. Если забыли, как это делается, смотрите здесь! 

 Деление чисел с разными знаками.

Частное двух чисел с разными знаками есть число отрицательное. Модуль частного равен частному модулей делимого и делителя.

ВЫВОД: и при умножении и при делении двух чисел с разными знаками — ответ будет со знаком «-».

Пример 3. Найти частное чисел:

Решение. Применяйте правила, решайте самостоятельно и только потом сверяйтесь с приведенным ниже решением.

Все получилось? Продолжим.

Пример 4. Вычислить:

Решайте и сверяйтесь!

Решение.

Желаю успехов в учебе! 

6.3.2. Умножение рациональных чисел

Умножение отрицательных чисел.

Произведение двух отрицательных чисел есть число положительное. Модуль произведения равен произведению модулей данных чисел.

Так как произведение положительных чисел — это тоже положительное число, то сделаем ВЫВОД:

Произведение двух чисел с одинаковыми знаками есть число положительное. Модуль этого числа равен произведению модулей данных чисел.

Пример 1.  Выполните умножение (устно):

а) -12·(-10); б) -0,05·(-100); в) -3,5·(-2); г) -0,12·(-0,5).

Решение. При решении всех примеров пользуемся правилом произведения двух отрицательных чисел. При решением примеров а) и б) применяем правило умножения десятичной дроби на 10, 100, 1000 и т.д. При решении примеров в) и г) применим правило умножения десятичной дроби на десятичную дробь. Если забыли, как это делается - смотрите здесь!

а) -12·(-10)=120; б) -0,05·(-100)=5; в) -3,5·(-2)=7; г) -0,12·(-0,5)=0,06.

Пример 2.  Вычислить:

Решение. Смешанное число в примере б) обратим в неправильную дробь. В примере в) вторую степень дроби заменим произведением двух одинаковых дробей. В примере г) четвертую степень дроби представим в виде произведения четырех одинаковых множителей.

Умножение чисел с разными знаками.

Произведение двух чисел с разными знаками есть число отрицательное. Модуль произведения равен произведению модулей данных чисел.

Пример 3. Вычислить устно:

а) -10·0,35; б) 4,1·(-100); в) 2,5·(-0,4); г) -0,05·200.

Решение. Применяем правило умножения двух чисел с разными знаками. Перемножим модули множителей и перед результатом поставим знак «минус».

а) -10·0,35=-3,5;  б) 4,1·(-100)=-410;  в) 2,5·(-0,4)=-1;  г) -0,05·200=-10.

Пример 4.  Вычислить:

Решение.

ЗАПОМНИЛИ:

Произведение двух чисел с одинаковыми знаками есть число положительное.

 Произведение двух чисел с разными знаками есть число отрицательное.

6.3.1. Сложение рациональных чисел

 Сложение отрицательных чисел.

Сумма отрицательных чисел есть число отрицательное. Модуль суммы равен сумме модулей слагаемых.

Давайте разберемся, почему же сумма отрицательных чисел будет тоже отрицательным числом. Поможет нам в этом координатная прямая, на которой мы выполним сложение чисел  -3 и -5. Отметим на координатной прямой точку, соответствующее числу -3.

К числу -3 нам нужно прибавить число -5. Куда мы пойдем от точки, соответствующей числу -3? Правильно, влево! На 5 единичных отрезков. Отмечаем точку и пишем число ей соответствующее. Это число -8.

Итак, при выполнении сложения отрицательных чисел с помощью координатной прямой мы все время находимся слева от начала отсчета, поэтому, понятно, что результат сложения отрицательных чисел есть число тоже отрицательное.

Примечание. Мы складывали числа -3 и -5, т.е. находили значение выражения -3+(-5). Обычно при сложении рациональных чисел просто записывают эти числа с их знаками, как бы перечисляют все числа, которые нужно сложить. Такую запись называют алгебраической суммой. Применяют (в нашем примере) запись: -3-5=-8.

Пример. Найти сумму отрицательных чисел: -23-42-54. (Согласитесь, что эта запись короче и удобнее вот такой: -23+(-42)+(-54))?

Решаем по правилу сложения отрицательных чисел: складываем модули слагаемых: 23+42+54=119. Результат будет со знаком «минус».

Записывают обычно так: -23-42-54=-119.

Сложение чисел с разными знаками.

Сумма двух чисел с разными знаками имеет знак слагаемого с большим модулем. Чтобы найти модуль суммы, нужно из большего модуля вычесть меньший.

Выполним сложение чисел с разными знаками с помощью координатной прямой.

1) -4+6. Требуется к числу -4 прибавить число 6. Отметим число -4 точкой на координатной прямой. Число 6 — положительное, значит от точки с координатой -4 нам нужно идти вправо на 6 единичных отрезков. Мы оказались справа от начала отсчета (от нуля) на 2 единичных отрезка.

Результат суммы чисел -4 и 6 — это положительное число 2:

— 4+6=2. Как можно было получить число 2? Из 6 вычесть 4, т.е. из большего модуля вычесть меньший. У результата тот же знак, что и у слагаемого с большим модулем.

2) Вычислим: -7+3 с помощью координатной прямой. Отмечаем точку, соответствующую числу -7. Идем вправо на 3 единичных отрезка и получаем точку с координатой -4. Мы были и остались слева от начала отсчета: ответ — отрицательное число.

— 7+3=-4. Этот результат мы могли получить так: из большего модуля вычли меньший, т.е. 7-3=4. В результате поставили знак слагаемого, имеющего больший модуль: |-7|>|3|.

Примеры. Вычислить: а) -4+5-9+2-6-3; б) -10-20+15-25.

Решение. а) сначала сложим все отрицательные числа (-4-9-6-3=-22), затем все положительные (5+2=7), а потом будем складывать числа с разными знаками (-22+7=-15). Записываем так:

— 4+5-9+2-6-3=-22+7=-15.

б) -10-20+15-25=-55+15=-40.

Страница 1 из 3123
Скайп-репетитор
ЕНТ в картинках
Instagram
Подготовка к ОГЭ и ЕГЭ
Instagram
Мои обучающие видео
Архивы
Репетиторство по математике
Наверх