8 класс. Алгебра
 
математика-повторение Закрепляем и систематизируем знания основ школьной математики.
Рубрика "8 класс. Алгебра"

8.2.1. Решение неполных квадратных уравнений

I. ax2=0 – неполное квадратное уравнение (b=0, c=0). Решение: х=0. Ответ: 0.

Решить уравнения.

Пример 1. 2x·(x+3)=6x-x2.

Решение. Раскроем скобки, умножив на каждое слагаемое в скобках:

2x2+6x=6x-x2; переносим слагаемые из правой части в левую:

2x2+6x-6x+x2=0; приводим подобные слагаемые:

3x2=0, отсюда  x=0.

Ответ: 0.

II. ax2+bx=0 – неполное квадратное уравнение (с=0). Решение: x (ax+b)=0 → x1=0 или ax+b=0 → x2=-b/a. Ответ: 0; -b/a.

Пример 2. 5x2-26x=0.

Решение. Вынесем общий множитель х за скобки:

х(5х-26)=0; каждый множитель может быть равным нулю:

х=0 или 5х-26=0 → 5х=26, делим обе части равенства на 5 и получаем: х=5,2.

Ответ: 0; 5,2.

Пример 3. 64x+4x2=0.

Решение. Вынесем общий множитель за скобки:

4х(16+х)=0. У нас три множителя, 4≠0, следовательно, или х=0 или 16+х=0. Из последнего равенства получим х=-16.

Ответ: -16; 0.

Пример 4. (x-3)2+5x=9.

Решение. Применив формулу квадрата разности двух выражений раскроем скобки:

x2-6x+9+5x=9;  преобразуем к виду: x2-6x+9+5x-9=0; приведем подобные слагаемые:

x2-x=0; вынесем х за скобки, получаем: x (x-1)=0. Отсюда или х=0 или х-1=0 → х=1.

Ответ: 0; 1.

III. ax2+c=0 – неполное квадратное уравнение (b=0); Решение: ax2=-c → x2=-c/a.

Если (-c/a)<0, то действительных корней нет. Если (-с/а)>0, то имеем два действительных корня:

Пример 5. x2-49=0.

Решение. 

x2=49, отсюда x=±7. Ответ: -7; 7.

Пример 6. 9x2-4=0.

Решение.   

 

8.2.5. Разложение квадратного трехчлена на линейные множители

Квадратный трехчлен ax2+bx+c  можно разложить на линейные множители по формуле:

 ax2+bx+c=a (x-x1)(x-x2),  где  x1,  x2 — корни квадратного уравнения ax2+bx+c=0.

Разложить квадратный трехчлен на линейные множители:

Пример 1). 2x2-7x-15.

Решение. Найдем корни квадратного уравнения: 2x2-7x-15=0.

a=2; b=-7; c=-15. Это общий случай для полного квадратного уравнения. Находим дискриминант D.

D=b2-4ac=(-7)2-4∙2∙(-15)=49+120=169=132>0; 2 действительных корня.

Применим формулу: ax2+bx+c=a (x-x1)(x-x2).

2x2-7x-15=2 (х+1,5)(х-5)=(2х+3)(х-5). Мы представили данный трехчлен 2x2-7x-15 в виде произведения двучленов 2х+3 и х-5.

Ответ: 2x2-7x-15=(2х+3)(х-5). 

Пример 2). 3x2+2x-8.

Решение. Найдем корни квадратного уравнения:

3x2+2x-8=0.

a=3; b=2; c=-8.  Это частный случай для полного квадратного уравнения с четным вторым коэффициентом (b=2). Находим дискриминант D1.

Применим формулу: ax2+bx+c=a (x-x1)(x-x2).

Мы представили трехчлен 3x2+2x-8 в виде произведения двучленов х+2 и 3х-4.

Ответ: 3x2+2x-8=(х+2)(3х-4).

Пример 3). 5x2-3x-2.

Решение. Найдем корни квадратного уравнения:

5x2-3x-2=0.

a=5; b=-3; c=-2. Это частный случай для полного квадратного уравнения с выполненным условием: a+b+c=0 (5-3-2=0). В таких случаях первый корень всегда равен единице, а второй корень равен частному от деления свободного члена на первый коэффициент:

Применим формулу: ax2+bx+c=a (x-x1)(x-x2).

5x2-3x-2=5 (х-1)(х+0,4)=(х-1)(5х+2). Мы представили трехчлен 5x2-3x-2 в виде произведения двучленов х-1 и 5х+2.

Ответ: 5x2-3x-2=(х-1)(5х+2).

Пример 4). 6x2+x-5.

Решение. Найдем корни квадратного уравнения:

6x2+x-5=0.

a=6; b=1; c=-5. Это частный случай для полного квадратного уравнения с выполненным условием: a-b+c=0 (6-1-5=0). В таких случаях первый корень всегда равен минус единице, а второй корень равен минус частному от деления свободного члена на первый коэффициент:

Применим формулу: ax2+bx+c=a (x-x1)(x-x2).

Мы представили трехчлен 6x2+x-5 в виде произведения двучленов х+1 и 6х-5.

Ответ: 6x2+x-5=(х+1)(6х-5).

Пример 5). x2-13x+12.

Решение. Найдем корни приведенного квадратного уравнения:

x2-13x+12=0. Проверим, можно ли применить теорему Виета. Для этого найдем дискриминант и убедимся, что он является полным квадратом целого числа.

a=1; b=-13; c=12. Находим дискриминант D.

D=b2-4ac=132-4∙1∙12=169-48=121=112.

Применим теорему Виета: сумма корней должна быть равна второму коэффициенту, взятому с противоположным знаком, а произведение корней должно быть равно свободному члену:

x1+x2=13; x1∙x2=12. Очевидно, что x1=1; x2=12.

Применим формулу: ax2+bx+c=a (x-x1)(x-x2).

x2-13x+12=(х-1)(х-12).

Ответ: x2-13x+12=(х-1)(х-12).

 Пример 6). x2-4x-6.

Решение. Найдем корни приведенного квадратного уравнения:

x2-4x-6=0.

a=1; b=-4; c=-6. Второй коэффициент — четное число. Находим дискриминант D1.

Дискриминант не является полным квадратом целого числа, поэтому, теорема Виета нам не поможет, и мы найдем корни по формулам для четного второго коэффициента:

Применим формулу: ax2+bx+c=a (x-x1)(x-x2) и запишем ответ:

Друзья, для того, чтобы разложить квадратные трехчлены на множители, мы решали каждое квадратное уравнение рациональным способом. Все эти способы мы рассмотрели ранее в теме:  «Решение полных квадратных уравнений».

 

8.2.4. Применение теоремы Виета

Часто требуется найти сумму квадратов  (x12+x22)  или сумму кубов (x13+x23) корней квадратного уравнения, реже — сумму обратных значений квадратов корней или сумму арифметических квадратных корней из корней квадратного уравнения:

Помочь в этом может теорема Виета:

Сумма корней приведенного квадратного уравнения x2+px+q=0 равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену:

x1+x2=-p;  x1∙x2=q.

Выразим через p и q:

1) сумму квадратов корней уравнения x2+px+q=0;

2) сумму кубов корней уравнения x2+px+q=0.

Решение.

1) Выражение x12+x2 получится, если взвести в квадрат обе части равенства x1+x2=-p;

(x1+x2)2=(-p)2;  раскрываем скобки: x12+2x1x2+ x22=p2;  выражаем искомую сумму: x12+x22=p2-2x1x2=p2-2q. Мы получили полезное равенство: x12+x22=p2-2q.

2) Выражение x13+x23 представим по формуле суммы кубов в виде:

(x13+x23)=(x1+x2)(x12-x1x2+x22)=-p·(p2-2q-q)=-p·(p2-3q).

Еще одно полезное равенство: x13+x23=-p·(p2-3q).

Примеры.

3) x2-3x-4=0. Не решая уравнение, вычислите значение выражения  x12+x2.

Решение.

По теореме Виета сумма корней этого приведенного квадратного уравнения

x1+x2=-p=3, а произведение x1∙x2=q=-4. Применим полученное нами (в примере 1) равенство:

x12+x22=p2-2q. У нас -p=x1+x2=3 → p2=32=9; q=x1x2=-4. Тогда x12+x22=9-2·(-4)=9+8=17.

Ответ: x12+x22=17.

4) x2-2x-4=0. Вычислить: x13+x23.

Решение.

По теореме Виета сумма корней этого приведенного квадратного уравнения x1+x2=-p=2, а произведение x1∙x2=q=-4. Применим полученное нами (в примере 2) равенство: x13+x23=-p·(p2-3q)=2·(22-3·(-4))=2·(4+12)=2·16=32.

Ответ:  x13+x23=32.

Вопрос: а если нам дано не приведенное квадратное уравнение? Ответ: его всегда можно «привести», разделив почленно на первый коэффициент.

5) 2x2-5x-7=0. Не решая, вычислить: x12+x22.

Решение. Нам дано полное квадратное уравнение. Разделим обе части равенства на 2 (первый коэффициент) и получим приведенное квадратное уравнение: x2-2,5x-3,5=0.

По теореме Виета сумма корней равна 2,5; произведение корней равно -3,5.

Решаем так же, как пример 3), используя равенство: x12+x22=p2-2q.

x12+x22=p2-2q=2,52-2∙(-3,5)=6,25+7=13,25.

Ответ: x12+x22=13,25.

6) x2-5x-2=0. Найти:

Преобразуем это равенство и, заменив по теореме Виета сумму корней через -p, а произведение корней через q, получим еще одну полезную формулу. При выводе формулы использовали равенство 1): x12+x22=p2-2q.

В нашем примере  x1+x2=-p=5; x1∙x2=q=-2. Подставляем эти значения  в полученную формулу:

7) x2-13x+36=0. Найти:

Преобразуем эту сумму и получим формулу, по которой можно будет находить сумму арифметических квадратных корней из корней квадратного уравнения.

У нас  x1+x2=-p=13; x1∙x2=q=36. Подставляем эти значения в выведенную формулу:

Совет: всегда проверяйте возможность нахождения корней квадратного уравнения по подходящему способу, ведь 4 рассмотренные полезные формулы позволяют быстро выполнить задание, прежде всего, в тех случаях, когда дискриминант — «неудобное» число. Во всех простых случаях находите корни и оперируйте ими. Например, в последнем примере подберем корни по теореме Виета: сумма корней должна быть равна 13, а произведение корней 36. Что это за числа? Конечно, 4 и 9. А теперь считайте сумму квадратных корней из этих чисел: 2+3=5. Вот так то!

 

8.2.3. Теорема Виета

I. Теорема Виета для приведенного квадратного уравнения.

Сумма корней приведенного квадратного уравнения x2+px+q=0 равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену:

x1+x2=-p;  x1∙x2=q.

 Найти корни приведенного квадратного уравнения, используя теорему Виета.

Пример 1) x2-x-30=0. Это приведенное квадратное уравнение ( x2+px+q=0), второй коэффициент  p=-1, а свободный член q=-30. Сначала убедимся, что данное уравнение имеет корни, и что корни (если они есть) будут выражаться целыми числами. Для этого достаточно, чтобы дискриминант был полным квадратом целого числа.

Находим дискриминант D=b2— 4ac=(-1)2-4∙1∙(-30)=1+120=121=112.

Теперь по теореме Виета сумма корней должна быть равна второму коэффициенту, взятому с противоположным знаком, т.е. (-p), а произведение равно свободному члену, т.е. (q). Тогда:

x1+x2=1; x1∙x2=-30. Нам надо подобрать такие два числа, чтобы их произведение было равно -30, а сумма – единице. Это числа -5 и 6. Ответ: -5; 6.

Пример 2) x2+6x+8=0. Имеем приведенное квадратное уравнение со вторым коэффициентом р=6 и свободным членом q=8. Убедимся, что есть целочисленные корни. Найдем дискриминант D1, так как второй коэффициент – четное число. D1=32-1∙8=9-8=1=12. Дискриминант Dявляется полным квадратом числа 1, значит, корни данного уравнения являются целыми числами. Подберем корни по теореме Виета: сумма корней равна –р=-6, а произведение корней равно q=8. Это числа -4 и -2.

На самом деле: -4-2=-6=-р; -4∙(-2)=8=q. Ответ: -4; -2.

Пример 3) x2+2x-4=0. В этом приведенном квадратном уравнении второй коэффициент р=2, а свободный член q=-4. Найдем дискриминант D1, так как второй коэффициент – четное число. D1=12-1∙(-4)=1+4=5. Дискриминант не является полным квадратом числа, поэтому, делаем вывод: корни данного уравнения не являются целыми числами и найти их по теореме Виета нельзя. Значит, решим данное уравнение, как обычно, по формулам (в данном случае по формулам для частного случая с четным вторым коэффициентом). Получаем:

Пример 4). Составьте квадратное уравнение по его корням, если x1=-7, x2=4.

Решение. Искомое уравнение запишется в виде: x2+px+q=0, причем, на основании теоремы Виета –p=x1+x2=-7+4=-3 → p=3; q=x1∙x2=-7∙4=-28. Тогда уравнение примет вид: x2+3x-28=0.

Пример 5). Составьте квадратное уравнение по его корням, если:

II. Теорема Виета для полного квадратного уравнения ax2+bx+c=0.

Сумма корней равна минус b, деленному на а, произведение корней равно с, деленному на а:

x1+x2=-b/a;  x1∙x2=c/a.

Пример 6). Найти сумму корней квадратного уравнения 2x2-7x-11=0.

Решение.

Убеждаемся, что данное уравнение будет иметь корни. Для этого достаточно составить выражение для дискриминанта, и, не вычисляя его, просто убедиться, что дискриминант больше нуля. D=72-4∙2∙(-11)>0. А теперь воспользуемся теоремой Виета для полных квадратных уравнений.

x1+x2=-b:a=- (-7):2=3,5.

Пример 7). Найдите произведение корней квадратного уравнения 3x2+8x-21=0.

Решение.

Найдем дискриминант D1, так как второй коэффициент (8) является четным числом. D1=42-3∙(-21)=16+63=79>0. Квадратное уравнение имеет 2 корня, по теореме Виета произведение корней x1∙x2=c:a=-21:3=-7.     

8.2.2. Решение полных квадратных уравнений

I. ax2+bx+c=0 – квадратное уравнение общего вида

Дискриминант D=b2— 4ac.

Если D>0, то имеем два действительных корня:

Если D=0, то имеем единственный корень (или два равных корня) х=-b/(2a).

Если D<0, то действительных корней нет.

Пример 1)  2x2+5x-3=0. 

Решение. a=2; b=5; c=-3.

D=b2— 4ac=52-4∙2∙(-3)=25+24=49=72>0; 2 действительных корня.

Пример 2)  4x2+21x+5=0.

Решение. a=4; b=21; c=5.

D=b2— 4ac=212— 4∙4∙5=441-80=361=192>0; 2 действительных корня.

II.  ax2+bx+c=0 – квадратное уравнение частного вида при четном втором

коэффициенте b

Пример 3)  3x2-10x+3=0.

Решение. a=3; b=-10 (четное число); c=3.

Пример 4) 5x2-14x-3=0.

Решение. a=5; b= -14 (четное число); c=-3.

Пример 5)  71x2+144x+4=0.

Решение. a=71; b=144 (четное число); c=4.

Пример 6) 9x2-30x+25=0.

Решение. a=9; b=-30 (четное число); c=25.

III.  ax2+bx+c=0 – квадратное уравнение частного вида при условии: a-b+c=0. 

Первый корень всегда равен минус единице, а второй корень равен минус с, деленному на а:

x1=-1, x2=-c/a.

Пример 7)  2x2+9x+7=0.

Решение. a=2; b=9; c=7. Проверим равенство: a-b+c=0. Получаем: 2-9+7=0.

Тогда x1=-1, x2=-c/a=-7/2=-3,5. Ответ: -1; -3,5.

IV.  ax2+bx+c=0 – квадратное уравнение частного вида при условии: a+b+c=0. 

Первый корень всегда равен единице, а второй корень равен с, деленному на а:

x1=1, x2=c/a.

Пример 8 )  2x2-9x+7=0.

Решение. a=2; b=-9; c=7. Проверим равенство: a+b+c=0. Получаем: 2-9+7=0.

Тогда x1=1, x2=c/a=7/2=3,5. Ответ: 1; 3,5.

Страница 1 из 11
Мои обучающие видео
Новинка!
Повтори весь школьный курс математики – получай новые материалы сайта на свою почту!

Email - адрес:

Архивы
Наверх