8 класс Геометрия
 
математика-повторение Закрепляем и систематизируем знания основ школьной математики.
Рубрика "8 класс Геометрия"

8.2.3.1. Прямоугольник. Решение задач 2

Задача 1.  Диагональ прямоугольника равна 16 и составляет со стороной угол 30°. Найти площадь прямоугольника.

Решение.

1 способ. Площадь прямоугольника найдем по формуле: S = ab (площадь прямоугольника равна произведению его длины на ширину). Для этого нам нужно найти стороны прямоугольника. Рассмотрим прямоугольный ∆ADC, в котором искомые стороны прямоугольника  AD и CD являются катетами. Гипотенуза АС=16, острый ∠САD=30°. Катет, лежащий против угла 30°, равен половине гипотенузы. Следовательно, CD=16:2=8. Второй катет AD найдем по теореме Пифагора: AD2+CD2=AC2. Подставляем значения. AD2+82=162; AD2+64=256; AD2=256-64;  AD2=192;

Катет AD можно было найти иначе – через косинус ∠САD. Так как косинусом острого угла прямоугольного треугольника называется отношение прилежащего углу катета к гипотенузе, то отсюда следует: катет, прилежащий углу, равен произведению гипотенузы на косинус этого угла.

У нас: AD=ACcos30°;

Подставим найденные значения в формулу площади прямоугольника.

2 способ. Пусть в прямоугольнике ABCD диагональ АС составляет угол 30° со стороной AD. Мы знаем, что диагональ прямоугольника делит прямоугольник на два равных треугольника. Рассмотрим один из этих треугольников – прямоугольный ∆ ADC (∠ADC=90°) CD – катет, противолежащий углу 30°, поэтому этот катет равен половине гипотенузы, т.е. CD = АС : 2 = 16 : 2 = 8 (см). Второй острый угол рассматриваемого прямоугольного ∆ ADC – угол AСD равен 60° (90°-30°=60°). Площадь треугольника ADC равна половине произведения двух его сторон АС и CD на синус угла между ними. Тогда площадь прямоугольника равна произведению АС и CD на синус угла между ними:

3 способ основан на том, что площадь прямоугольника можно найти как половину произведения его диагоналей на синус угла между ними. Проведем вторую диагональ BD и обозначим точку пересечения диагоналей через О. Углом между двумя пересекающимися прямыми считают меньший из образовавшихся углов. У нас это угол АОВ. Обозначим его через α. Найдем градусную меру угла α. Так как диагонали прямоугольника равны и точкой пересечения делятся пополам, то ∆АОВ – равнобедренный с углами при основании по 60°. На самом деле: ∠ОАВ=90°-∠САD=90°-30°=60°. Третий угол треугольника АОВ, т.е. угол α также равен 60° (считали: 180°-60°-60°). Площадь прямоугольника:

Задача 2. Диагональ прямоугольника составляет с его стороной, равной 10 см, угол 60°. Найти периметр и площадь прямоугольника.

Решение.

Периметр прямоугольника P□ = 2 (a+b), S□ = ab, где a и b – стороны прямоугольника. Нам известна лишь одна сторона: а = 10. Найдем вторую сторону, как неизвестный катет прямоугольного треугольника, противолежащий углу 60°. Так как тангенс острого угла прямоугольного треугольника равен отношению противолежащего катета к прилежащему, то b = a ∙ tg60°. Подставляем значения и получаем:

 

8.2.3. Прямоугольник. Решение задач

Задача 1. Одна сторона прямоугольника меньше другой на 7 см, а диагональ прямоугольника равна 17 см. Найти периметр прямоугольника.

Решение. Пусть АВ=х. Тогда AD=х+7. Зная, что диагональ BD=17, используем теорему Пифагора и составим уравнение:

AB2 +AD2=BD2. Получаем: х2+(х+7)2=172 ⇒ х22+14х+49=289;

2+14х-240=0; х2+7х-120=0, отсюда по теореме Виета х1=-15; х2=8.

Следовательно, АВ=8 см, AD=8+7=15 см. Периметр прямоугольника:

P□ = 2(AB+AD);  P□ = 2(8+15);  P□ = 46 см. Ответ: 46 см.

Задача 2. Периметр прямоугольника 94 см, а диагональ 37 см. Найти площадь прямоугольника.

Решение. Периметр прямоугольника P□ = 2(AB+AD) = 94, следовательно,  (AB+AD)=47. Пусть  АВ=х. Тогда AD=47-х. Зная, что диагональ BD=37, используем теорему Пифагора и составим уравнение:

AB2 +AD2=BD2. Получаем: х2+(47-х)2=372 ⇒ х2+472-94х+ х2=1369;

2-94х+2209—1369=0; 2х2-94х+840=0. Делим обе части равенства на 2. Получаем:

х2-47х+420=0. Найдем дискриминант.

D=b2-4ac=472-4∙1∙420=2209—1680=529=232>0; 2 д.к.

х1 = (47-23)/2=12; х2 = (47+23)/2=35.

Так как АВ=х, то либо АВ=12, тогда AD=47-12=35; либо АВ=35, тогда AD=47-35=12. Таким образом, стороны прямоугольника равны 12 см и 35 см. Площадь прямоугольника S□ = ABAD=1235=420 (см2). Ответ: 420 см2.

Задача 3. Стороны прямоугольника относятся как 3:4, а площадь прямоугольника равна 108 см2. Найти диагональ прямоугольника.

Решение. Обозначим одну часть через х. Тогда АВ=3х. Тогда AD=4х.

Так как S□ = ABAD и по условию равна 108 см2, то можно составить уравнение:

4х=108. Тогда 12х2=108, а разделив обе части равенства на 12, получаем:

х2=9. Отсюда х=3, так как х – положительное число. Стороны прямоугольника

Тогда АВ=3х=33=9 и AD=4х=43=12. Из прямоугольного треугольника BAD по теореме Пифагора найдем BD – искомую диагональ прямоугольника.

BD2=AB2+AD2=92+122=81+144=225, отсюда BD=15 см. Ответ: 15 см.

Задача 4. Биссектриса одного из углов прямоугольника делит сторону прямоугольника пополам. Найдите диагональ прямоугольника, если его меньшая сторона равна 15 см.

Решение. Итак, в прямоугольнике ABCD биссектриса АК делит сторону ВС пополам. АВ=15 см. Требуется найти диагональ АС прямоугольника. В прямоугольном треугольнике АВК один из острых углов равен 45° (биссектриса АК делит прямой угол пополам: ∠ВАК=∠КАD=45°). Тогда и второй острый угол треугольника АВК равен 45°, т.е. ∠АКВ=45°. Углы при основании ∆АВК равны, следовательно, ∆АВК – равнобедренный. Это означает, что ВК=АВ=15 см. А так как биссектриса АК по условию разделила сторону ВС пополам, то ВС=2ВК=30 см. Стороны прямоугольника 15 см и 30 см. Из прямоугольного треугольника АВС по теореме Пифагора найдем АС – искомую диагональ прямоугольника.

АС2=AB2+ВС2=152+302=225+900=1125, отсюда получаем:

Задача 5. В прямоугольнике точка пересечения диагоналей отстоит от меньшей стороны на 7 см дальше, чем от большей стороны. Диагональ прямоугольника равна 26 см. Найдите стороны прямоугольника.

Решение. Пусть точка О – пересечение диагоналей прямоугольника ABCD отстоит от стороны AD на х см, тогда от стороны АВ точка О будет отстоять на (х+7) см, т.е ОМ=х и ОК=х+7. Так как диагонали прямоугольника равны и точкой пересечения делятся пополам, то АО=АС:2=26:2=13 (см). Заметим, что МА=ОК. На основании теоремы Пифагора из прямоугольного треугольника АМО получаем равенство:

ОМ2+МА2=АО2 или х2+(х+7)2=132. Упрощаем равенство:

х22+14х+49=169;  2х2+14х-120=0; х2+7х-60=0. Корни этого приведенного квадратного уравнения удобно найти по теореме Виета.

х1=-12, х2=5. Так как сторона выражается положительным числом, то ОМ=х=5 см. тогда ОК=5+7=12 (см). АК=ОМ=5 см и АМ=ОК=12 см – это половинки сторон прямоугольника. Тогда АВ=2АК=10 см и AD=2МА=24 см. Ответ: 10 см и 24 см.

8.2.5. Основные тригонометрические тождества. Часть 2

Основные тригонометрические тождества.

Пример 1. Вычислить значения cosα, tgα, ctgα, если sinα = 5/13 и угол α – острый.

Решение. Найдем cosα по формуле 1б), учитывая, что угол α – острый.

Тангенс α найдем по формуле 2). Подставим значения синуса и косинуса.

Так как по формуле 6) tgα ctgα = 1, то ctgα = 1 : tgα. Говорят, что котангенс – это «перевернутый» тангенс, следовательно,

Пример 2. Вычислить значения sinα, tgα, ctgα, если cosα = 0,6 и угол α – острый.

Решение. Найдем sinα по формуле 1a), учитывая, что угол α – острый.

Тангенс α найдем по формуле 2). Подставим значения синуса и косинуса.

Так как по формуле 6) tgα  ctgα = 1, то ctgα = 1 : tgα. Тогда

Пример 3. Вычислить значения sinα, cosα, ctgα, если tgα = 15/8 и угол α – острый.

Решение.

Котангенс – это «перевернутый» тангенс, поэтому, ctgα = 8/15. Далее находим cosα.

Применим формулу 7), подставив в эту формулу  данное значение тангенса α.

sinα = tgα cosα. Запомните это тождество!  Тогда находим

Пример 4. Вычислить значения sinα, cosα, tgα, если ctgα = 9/40 и угол α – острый.

Решение.

Тангенс – это «перевернутый» котангенс, поэтому, tgα = 40/9. Далее находим cosα,

применяя ту же формулу 7). Подставим в эту формулу  полученное значение тангенса α.

Вы уже запомнили тождество: sinα = tgα cosα. Применяем и находим

Запомните еще одно тождество: cosα = ctgα sinα

8.2.4. Основные тригонометрические тождества. Часть 1

Основные тригонометрические тождества.

secα читают: «секанс альфа». Это число, обратное косинусу альфа.

соsecα читают: «косеканс альфа». Это число, обратное синусу альфа.

Примеры. Упростить выражение:

а) 1 – sin2α; б) cos2α – 1; в) (1 – cosα)(1+cosα); г) sin2αcosα – cosα; д) sin2α+1+cos2α;

е) sin4α+2sin2αcos2α+cos4α; ж) tg2α – sin2αtg2α; з) ctg2αcos2α – ctg2α; и) cos2α+tg2αcos2α.

Решение.

а) 1 – sin2α = cos2α по формуле 1);

б) cos2α – 1 =- (1 – cos2α) = -sin2α также применили формулу 1);

в) (1 – cosα)(1+cosα) = 1 – cos2α = sin2α. Вначале мы применили формулу разности квадратов двух выражений: (a – b)(a+b) = a2 – b2, а затем формулу 1);

г) sin2αcosα – cosα. Вынесем общий множитель за скобки.

sin2αcosα – cosα = cosα(sin2α – 1) = -cosα(1 – sin2α) = -cosα cos2α = -cos3α. Вы, конечно, уже заметили, что так как 1 – sin2α = cos2α, то sin2α – 1 = -cos2α. Точно так же, если 1 – cos2α = sin2α, то cos2α – 1 = -sin2α.

д) sin2α+1+cos2α = (sin2α+cos2α)+1 = 1+1 = 2;

е) sin4α+2sin2αcos2α+cos4α. Имеем: квадрат выражения sin2α плюс удвоенное произведение sin2α на cos2α и плюс квадрат второго выражения cos2α. Применим формулу квадрата суммы двух выражений: a2+2ab+b2=(a+b)2. Далее применим формулу 1). Получим:  sin4α+2sin2αcos2α+cos4α = (sin2α+cos2α)2 = 12 = 1;

ж) tg2α – sin2αtg2α = tg2α(1 – sin2α) = tg2α cos2α = sin2α. Применили формулу 1), а затем формулу 2).

Запомните: tgα ∙ cosα = sinα.

Аналогично, используя формулу  3) можно получить: ctgα ∙ sinα = cosα. Запомнить!

з) ctg2αcos2α – ctg2α = ctg2α(cos2α – 1) = ctg2α (-sin2α) = -cos2α.

и) cos2α+tg2αcos2α = cos2α(1+tg2α) = 1. Мы вначале вынесли общий множитель за скобки, а содержимое скобок упростили по формуле 7).

Преобразовать выражение:

Мы применили формулу 7) и получили произведение суммы двух выражений на неполный квадрат разности этих выражений – формулу суммы кубов двух выражений:

a3 + b3 = (a + b)(a2 – ab + b2). У нас а = 1, b = tg2α.

Упростить:

8.1.4. Признаки параллелограмма

I.  Если две противоположные стороны четырехугольника параллельны и равны, то этот четырехугольник — параллелограмм.

Задача 1. Из вершин В и D параллелограмма  АBCD, у которого АВ≠ ВС и угол А — острый, проведены перпендикуляры  BK  и DM к прямой АС. Докажите, что четырехугольник BMDK — параллелограмм.

Доказательство.

Так как ВК и DM  перпендикулярны одной и той же прямой АС, то ВК II DM. Кроме того, ВК и DM являются высотами, проведенными в равных треугольниках  Δ АВС и Δ CDA из вершин равных углов ∠B  и ∠D к одной и той же стороне АС, следовательно, ВК = DM. Имеем: две стороны ВК и DM четырехугольника BMDK параллельны и равны, значит, BMDK – параллелограмм, что и требовалось доказать.

II.  Если противоположные стороны четырехугольника попарно равны, то этот четырехугольник — параллелограмм.

Задача 2. На сторонах AB, BC, CD и DA  четырехугольника ABCD отмечены соответственно точки M, N, P и Q так, что  AM=CP, BN=DQ, BM=DP, NC=QA. Докажите, что  ABCD и MNPQ — параллелограммы.

Доказательство.

1. По условию в четырехугольнике ABCD противоположные стороны состоят из равных отрезков, поэтому равны, т.е. AD=BC, AB=CD. Следовательно, ABCD – параллелограмм.

2. Рассмотрим Δ MBN и Δ PDQ. BM=DP и BN=DQ по условию. ∠B =∠D как противолежащие углы параллелограмма ABCD. Значит, Δ MBN = Δ PDQ по двум сторонам и углу между ними (1-й признак равенства треугольников). А в равных треугольниках против равных углов лежат равные стороны. Отсюда  MN=PQ. Мы доказали, что противоположные стороны MN и PQ четырехугольника MNPQ равны. Аналогично, из равенства треугольников Δ MAQ и Δ PCN следует равенство сторон MQ и PN, которые являются противоположными сторонами четырехугольника MNPQ. Имеем: противоположные стороны четырехугольника MNPQ попарно равны. Следовательно, четырехугольник MNPQ – параллелограмм. Задача решена.

III.  Если диагонали четырехугольника пересекаются и точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.

Задача 3. Диагонали параллелограмма ABCD пересекаются в точке O, Докажите, что четырехугольник MNPQ, вершинами которого являются середины отрезков OA, OB, OC и OD, — параллелограмм.

Доказательство.

По свойству диагоналей параллелограмма ABCD его диагонали AC и BD точкой пересечения делятся пополам, т.е. ОА=ОС и ОВ=OD. Диагонали четырехугольника MNPQ так же пересекаются в точке О, которая будет серединой каждой их них. Действительно, так как вершины четырехугольника MNPQ  по условию являются серединами отрезков ОА, ОС, ОВ и OD, то  BN=ON=OQ=DQ  и  AM=OM=OP=CP. Следовательно, диагонали MP и NQ четырехугольника MNPQ в точке пересечения делятся пополам, следовательно, четырехугольник MNPQ – параллелограмм, что и требовалось доказать.

8.1.3. Свойство углов и сторон параллелограмма

Задача 1. Один из углов параллелограмма равен 65°. Найти остальные углы параллелограмма.

Решение.

∠C =∠A = 65° как противоположные углы параллелограмма.

∠А +∠В = 180° как углы, прилежащие к одной стороне параллелограмма.

∠В = 180° — ∠А = 180° — 65° = 115°.

∠D =∠B = 115° как противолежащие углы параллелограмма.

Ответ: ∠А =∠С = 65°; ∠В =∠D = 115°.

Задача 2. Сумма двух углов параллелограмма равна 220°. Найти углы параллелограмма.

 Решение.

Так как у параллелограмма имеется  2 равных острых угла и 2 равных тупых угла, то нам дана сумма двух тупых углов, т.е. ∠В +∠D = 220°. Тогда ∠В =∠D = 220°: 2 = 110°.

∠А +∠В = 180° как углы, прилежащие к одной стороне параллелограмма, поэтому ∠А = 180° — ∠В = 180° — 110° = 70°. Тогда  ∠C =∠A = 70°.

Ответ: ∠А =∠С = 70°; ∠В =∠D = 110°.

Задача 3. Один из углов параллелограмма в 3 раза больше другого. Найти углы параллелограмма.

Решение.

Пусть ∠А =х. Тогда ∠В = 3х. Зная, что сумма углов параллелограмма, прилежащих к одной его стороне равна 180°, составим уравнение.

х + 3х = 180;

4х = 180;

х = 180 : 4;

х = 45.

Получаем: ∠А =х = 45°, а ∠В = 3х = 3 ∙ 45° = 135°.

Противолежащие углы параллелограмма равны, следовательно,

∠А =∠С = 45°; ∠В =∠D = 135°.

Ответ: ∠А =∠С = 45°; ∠В =∠D = 135°.

Задача 4. Докажите, что если у четырехугольника две стороны параллельны и равны, то этот четырехугольник – параллелограмм.

 Доказательство.

Проведем диагональ BD  и рассмотрим  Δ ADB и Δ CBD.

AD = BC по условию. Сторона BD – общая.  ∠1 = ∠2 как внутренние накрест лежащие при параллельных (по условию) прямых AD и BC и секущей BD. Следовательно, Δ ADB = Δ CBD по двум сторонам и углу между ними (1-й признак равенства треугольников).  В равных треугольниках соответственные углы равны, значит, ∠3 =∠4. А эти углы являются внутренними накрест лежащими при прямых AB и CD и секущей BD. Отсюда следует параллельность прямых AB и CD. Таким образом, в данном четырехугольнике ABCD противолежащие стороны попарно параллельны, следовательно, по определению ABCD – параллелограмм, что и требовалось доказать.

Задача 5. Две стороны параллелограмма относятся как 2 : 5, а периметр равен 3,5 м. Найти стороны параллелограмма.

Решение.

Периметр параллелограмма PABCD= 2 (AB + AD).

Обозначим одну часть через х. тогда AB = 2x, AD = 5x метров. Зная, что периметр параллелограмма равен 3,5 м, составим уравнение:

2 (2x + 5x) = 3,5;

2 7x = 3,5;

14x = 3,5;

x = 3,5 : 14;

x = 0,25.

Одна часть составляет 0,25 м. Тогда AB = 2 0,25 = 0,5 м; AD = 5 0,25 = 1,25 м.

Проверка.

Периметр параллелограмма PABCD= 2 (AB + AD) = 2 (0,25 + 1,25) = 2 1,75 = 3,5 (м).

Так как противоположные стороны параллелограмма равны, то CD = AB = 0,25 м; BC = AD = 1,25 м.

Ответ: CD = AB = 0,25 м; BC = AD = 1,25 м.

 

8.2.2. Теорема Пифагора

Теорема Пифагора.  

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Катеты АС и ВС, гипотенуза АВ.

АВ²=АС²+ВС² или АС²+ВС²=АВ².

Если АС=b, BC=a, AB=c, то  c²=a²+b² или a²+b²=c².

Египетский треугольник — это прямоугольный треугольник со сторонами 3, 4 и 5.

3²+4²=5². На рисунке (выше) показан египетский треугольник.

Задача. Две стороны прямоугольного треугольника равны 6 см и 8 см. Найти третью сторону. (Рассмотреть два случая).

1 случай. Пусть две данные стороны — катеты прямоугольного треугольника.

Дано: в Δ АВС  C=90º, АС=6 см, ВС=8 см.

Найти АВ.

 Решение.  По теореме Пифагора:

АВ²=АС²+ВС²;

АВ²=6²+8²;

АВ²=36+64;

Ответ: АВ=10 см.

2 случай. Пусть две данные стороны — катет и гипотенуза прямоугольного треугольника.

Дано: в Δ АВС  C=90º, ВС=6 см, АВ=8 см.

Найти АС.

Решение.   По теореме Пифагора:

АВ²=АС²+ВС²;

8²=АС²+6²;

64=АС²+36;  АС²=64-36;

 

Страница 1 из 11
Скайп-репетитор
ЕНТ в картинках
Instagram
Подготовка к ОГЭ и ЕГЭ
Instagram
Мои обучающие видео
Архивы
Репетиторство по математике
Наверх