неопределенный интеграл | математика-повторение
 
математика-повторение Закрепляем и систематизируем знания основ школьной математики.
Записи с меткой "неопределенный интеграл"

11.1.5. Непосредственное интегрирование-2

При интегрировании путем подведения под знак дифференциала, в предыдущих занятиях, мы подводили под знак дифференциала линейную функцию. На самом деле, вместо переменной u мы каждый раз подразумевали выражение вида kx+b, т.е. полагали: u-kx+b, получали du=kdx, а затем перед знаком интеграла ставили коэффициент 1/k, чтобы не изменилось значение данного интеграла. При решении использовали свойства и таблицу интегралов — лист Интегралы.

А можно ли под знак дифференциала подводить нелинейную функцию? Да, если подынтегральное выражение представляет собой произведение двух множителей: один множитель — сложная функция от какой-то нелинейной функции, а другой множитель есть производная от этой нелинейной функции. Рассмотрим сказанное на примерах.

Найти неопределенные интегралы.

Пример 1. ∫(2x + 1)(x2 + x + 2)5 dx = ∫(x2 + x + 2)5 d (x2 + x + 2) =(x²+x+2)6:6  + C.

Что представляет собой данное подынтегральное выражение? Произведение степенной функции от (х2 + х + 2) и множителя (2х + 1), который равен производной от основания степени: (х2 + х + 2)' = 2х + 1.

Это и позволило нам подвести (2х + 1) под знак дифференциала:

(2x + 1) dx =  d (x2 + x + 2). А далее мы применили формулу:

∫u5du=u6:6+ C.   (Формула 1). Интегралы)

Проверка. (F (x)+ C)' =((x²+x+2)6:6  + C)′=1/6 · 6 (x2 + x + 2)5 · (x2 + x + 2)' =

=(x2 + x + 2)5 · (2x + 1) = (2x + 1)(x2 + x + 2)5 = f (x).

Пример 2. ∫(3x2 – 2x + 3)(x3 -  x2 + 3x + 1)5 dx = ∫(x3 – x2 + 3x + 1)5 d (x3 – x2 + 3x + 1) =

=(x³- x²+3x+1)6:6  + C

И чем этот пример отличается от примера 1? Да ничем! Та же пятая степень с основанием  (х3 – х2 + 3х + 1) умножается на трехчлен (3х2 – 2х + 3), который является производной основания степени: (х3 – х2 + 3х + 1)' = 3х2 – 2х + 3. Это основание степени мы и подвели под знак дифференциала, от чего значение подынтегрального выражения не изменилось, а затем применили ту же формулу 1). (Интегралы)

Пример 3.  

Здесь производная от (2х3 – 3х) даст (6х2 – 3), а у нас

имеется (12х2 – 6), то есть выражение в 2 раза большее, значит, подведем (2х3 – 3х) под знак дифференциала, а перед интегралом поставим множитель 2. Применим формулу 2) (лист Интегралы).

Вот что получится:

Сделаем проверку, учитывая, что:

Итак,

11.1.3. Интегрирование путем подведения под знак дифференциала

На прошлом занятии (11.1.2), рассматривая примеры на  нахождение неопределенных интегралов, мы познакомились со способом подведения под знак дифференциала (мы называли его вторым способом). Фактически мы вводили новую переменную, не называя ее, а только подразумевая.

На этом занятии мы закрепим навык замены переменной в неопределенном интеграле и знания  свойств и таблицы интегралов. Нам опять понадобится наш лист Интегралы

Примеры. Найти неопределенные интегралы.

  1. ∫(6х+5)3dx. Как будем решать? Смотрим в лист Интегралы и рассуждаем примерно так: подынтегральная функция представляет собой степень, а у нас есть формула для интеграла степени (формула 1)), но в ней основание степени u и переменная интегрирования тоже u.

А у нас переменная интегрирования х, а основание степени (6х+5). Сделаем замену переменной интегрирования: вместо dx запишем d (6х+5). Что изменилось? Так как, то, что стоит после знака дифференциала d, по умолчанию, дифференцируется,

то d (6x+5)=6dx, т.е. при замене переменной х на переменную (6х+5) подынтегральная функция возросла в 6 раз, поэтому перед знаком интеграла ставим множитель 1/6. Записать эти рассуждения можно так:

Итак, мы решили этот пример введением новой переменной (переменную х заменили на переменную 6х+5). А куда записали новую переменную (6х+5)? Под знак дифференциала. Поэтому, данный метод введения новой переменной часто называют методом (или способом) подведения (новой переменной) под знак дифференциала.

Во втором примере мы вначале получили степень с отрицательным показателем, а  затем подвели под знак дифференциала (7х-2) и использовали формулу интеграла степени 1) (Интегралы).

Разберем решение примера 3.

Перед интегралом стоит коэффициент 1/5. Почему? Так как d (5x-2)=5dx, то, подведя под знак дифференциала функцию u=5x-2, мы увеличили подынтегральное выражение в 5 раз, поэтому, чтобы значение данного выражения не изменилось — надо было разделить на 5, т.е. умножить на 1/5. Далее, была использована формула 2) (Интегралы).

11.1.1. Основные формулы и свойства неопределенного интеграла

Все простейшие формулы интегралов будут иметь вид:

∫f (x) dx=F (x)+C, причем, должно выполняться равенство:

(F (x)+C)'=f (x).

Формулы интегрирования можно получить обращением соответствующих формул дифференцирования.

Действительно,

Показатель степени n может быть  и дробным. Часто приходится находить неопределенный интеграл от функции у=√х. Вычислим интеграл от функции f (x)=√x, используя формулу 1).

Запишем этот пример в виде формулы 2).

Так как (х+С)'=1, то ∫dx=x+C.

3) ∫dx=x+C.

Заменяя 1/х² на х-2, вычислим интеграл от 1/х².

А можно было получить этот ответ обращением известной формулы дифференцирования:

Запишем наши рассуждения в виде формулы 4).

Умножив обе части полученного равенства на 2, получим формулу 5).

Найдем интегралы от основных тригонометрических функций, зная их производные: (sinx)'=cosx; (cosx)'=-sinx; (tgx)'=1/cos²x; (ctgx)'=-1/sin²x. Получаем формулы интегрирования 6) — 9).

6) ∫cosxdx=sinx+C;

7) ∫sinxdx=-cosx+C;

После изучения показательной и логарифмической функций, добавим еще несколько формул.

Основные свойства неопределенного интеграла.

I. Производная неопределенного интеграла равна подынтегральной функции.

(∫f (x) dx)'=f (x).

II. Дифференциал неопределенного интеграла равен подынтегральному выражению.

d∫f (x) dx=f (x) dx.

III. Неопределенный интеграл от дифференциала (производной) некоторой функции равен сумме этой функции и произвольной постоянной С.

∫dF (x)=F (x)+C  или   ∫F'(x) dx=F (x)+C.

Обратите внимание: в I, II и III свойствах знаки дифференциала и интеграла (интеграла и дифференциала) «съедают» друг друга!

IV. Постоянный множитель подынтегрального выражения можно вынести за знак интеграла.

∫kf (x) dx=k·∫f (x) dx, где k - постоянная величина, не равная нулю.

V.  Интеграл от алгебраической суммы функций равен алгебраической сумме интегралов от этих функций.

∫(f (x)±g (x)) dx=∫f (x) dx±∫g (x) dx.

VI. Если F (x) есть первообразная для f (x), а k и b — постоянные величины, причем, k≠0, то (1/k)·F (kx+b) есть первообразная для f (kx+b). Действительно, по правилу вычисления производной сложной функции имеем:

Можно записать:

11.1. Первообразная. Неопределенный интеграл.

Для каждого математического действия существует обратное ему действие. Для действия дифференцирования (нахождения производных функций) тоже существует обратное действие — интегрирование. Посредством интегрирования находят (восстанавливают) функцию по заданной ее производной или дифференциалу. Найденную функцию называют первообразной.

Определение. Дифференцируемая функция F (x) называется первообразной для функции f (x) на заданном промежутке, если для всех х из этого промежутка справедливо равенство: F′(x)=f (x).

Примеры. Найти первообразные для функций: 1) f (x)=2x; 2) f (x)=3cos3x.

1) Так как (х²)′=2х, то, по определению, функция F (x)=x² будет являться первообразной для функции f (x)=2x.

2) (sin3x)′=3cos3x.  Если обозначить f (x)=3cos3x и F (x)=sin3x, то, по определению первообразной, имеем: F′(x)=f (x), и, значит, F (x)=sin3x является первообразной для f (x)=3cos3x.

Заметим, что и  (sin3x+5)′=3cos3x, и  (sin3x-8,2)′=3cos3x, ... в общем виде можно записать:  (sin3x)′=3cos3x, где С — некоторая постоянная величина. Эти примеры говорят о неоднозначности действия интегрирования, в отличие от действия дифференцирования, когда у любой дифференцируемой функции существует единственная производная.

Определение. Если функция F (x) является первообразной для функции f (x) на некотором промежутке, то множество всех первообразных этой функции имеет вид:

F (x)+C, где С — любое действительное число.

Совокупность всех первообразных F (x)+C функции f (x) на рассматриваемом промежутке называется неопределенным интегралом и обозначается символом (знак интеграла). Записывают: ∫f (x) dx=F (x)+C.

Выражение ∫f (x) dx читают: «интеграл эф от икс по дэ икс».

f (x) dx — подынтегральное выражение,

f (x) — подынтегральная функция,

х — переменная интегрирования.

F (x) — первообразная для функции f (x),

С — некоторая постоянная величина.

Теперь рассмотренные примеры  можно записать так:

1) 2хdx=x²+C.                       2) ∫3cos3xdx=sin3x+C.

Что же означает знак d?

d —  знак дифференциала —  имеет двойное назначение: во-первых, этот знак отделяет подынтегральную функцию от переменной интегрирования; во-вторых, все, что стоит после этого знака диференцируется по умолчанию и умножается на подынтегральную функцию.

Примеры. Найти интегралы: 3) 2pxdx;  4) 2pxdp.

Решение.

3) После значка дифференциала d стоит х. Значит, переменная интегрирования х, а р следует считать некоторой постоянной величиной.

2хрdx=рх²+С. Сравните с примером 1). 

Сделаем проверку. F′(x)=(px²+C)′=p·(x²)′+C′=p·2x=2px=f (x).

4) После значка дифференциала d стоит р. Значит, переменная интегрирования р, а множитель х следует считать некоторой постоянной величиной.

2хрdр=р²х+С. Сравните  с примерами 1) и 3).

Сделаем проверку. F′(p)=(p²x+C)′=x·(p²)′+C′=x·2p=2px=f (p).

Страница 1 из 11
Мои обучающие видео
Новинка!
Повтори весь школьный курс математики – получай новые материалы сайта на свою почту!

Email - адрес:

Архивы
Наверх