Блог - Part 2
 

математика-повторение

Закрепляем и систематизируем знания основ школьной математики.

8.2.5. Основные тригонометрические тождества. Часть 2

Основные тригонометрические тождества.

Пример 1. Вычислить значения cosα, tgα, ctgα, если sinα = 5/13 и угол α – острый.

Решение. Найдем cosα по формуле 1б), учитывая, что угол α – острый.

Тангенс α найдем по формуле 2). Подставим значения синуса и косинуса.

Так как по формуле 6) tgα ctgα = 1, то ctgα = 1 : tgα. Говорят, что котангенс – это «перевернутый» тангенс, следовательно,

Пример 2. Вычислить значения sinα, tgα, ctgα, если cosα = 0,6 и угол α – острый.

Решение. Найдем sinα по формуле 1a), учитывая, что угол α – острый.

Тангенс α найдем по формуле 2). Подставим значения синуса и косинуса.

Так как по формуле 6) tgα  ctgα = 1, то ctgα = 1 : tgα. Тогда

Пример 3. Вычислить значения sinα, cosα, ctgα, если tgα = 15/8 и угол α – острый.

Решение.

Котангенс – это «перевернутый» тангенс, поэтому, ctgα = 8/15. Далее находим cosα.

Применим формулу 7), подставив в эту формулу  данное значение тангенса α.

sinα = tgα cosα. Запомните это тождество!  Тогда находим

Пример 4. Вычислить значения sinα, cosα, tgα, если ctgα = 9/40 и угол α – острый.

Решение.

Тангенс – это «перевернутый» котангенс, поэтому, tgα = 40/9. Далее находим cosα,

применяя ту же формулу 7). Подставим в эту формулу  полученное значение тангенса α.

Вы уже запомнили тождество: sinα = tgα cosα. Применяем и находим

Запомните еще одно тождество: cosα = ctgα sinα

8.2.4. Основные тригонометрические тождества. Часть 1

Основные тригонометрические тождества.

secα читают: «секанс альфа». Это число, обратное косинусу альфа.

соsecα читают: «косеканс альфа». Это число, обратное синусу альфа.

Примеры. Упростить выражение:

а) 1 – sin2α; б) cos2α – 1; в) (1 – cosα)(1+cosα); г) sin2αcosα – cosα; д) sin2α+1+cos2α;

е) sin4α+2sin2αcos2α+cos4α; ж) tg2α – sin2αtg2α; з) ctg2αcos2α – ctg2α; и) cos2α+tg2αcos2α.

Решение.

а) 1 – sin2α = cos2α по формуле 1);

б) cos2α – 1 =- (1 – cos2α) = -sin2α также применили формулу 1);

в) (1 – cosα)(1+cosα) = 1 – cos2α = sin2α. Вначале мы применили формулу разности квадратов двух выражений: (a – b)(a+b) = a2 – b2, а затем формулу 1);

г) sin2αcosα – cosα. Вынесем общий множитель за скобки.

sin2αcosα – cosα = cosα(sin2α – 1) = -cosα(1 – sin2α) = -cosα cos2α = -cos3α. Вы, конечно, уже заметили, что так как 1 – sin2α = cos2α, то sin2α – 1 = -cos2α. Точно так же, если 1 – cos2α = sin2α, то cos2α – 1 = -sin2α.

д) sin2α+1+cos2α = (sin2α+cos2α)+1 = 1+1 = 2;

е) sin4α+2sin2αcos2α+cos4α. Имеем: квадрат выражения sin2α плюс удвоенное произведение sin2α на cos2α и плюс квадрат второго выражения cos2α. Применим формулу квадрата суммы двух выражений: a2+2ab+b2=(a+b)2. Далее применим формулу 1). Получим:  sin4α+2sin2αcos2α+cos4α = (sin2α+cos2α)2 = 12 = 1;

ж) tg2α – sin2αtg2α = tg2α(1 – sin2α) = tg2α cos2α = sin2α. Применили формулу 1), а затем формулу 2).

Запомните: tgα ∙ cosα = sinα.

Аналогично, используя формулу  3) можно получить: ctgα ∙ sinα = cosα. Запомнить!

з) ctg2αcos2α – ctg2α = ctg2α(cos2α – 1) = ctg2α (-sin2α) = -cos2α.

и) cos2α+tg2αcos2α = cos2α(1+tg2α) = 1. Мы вначале вынесли общий множитель за скобки, а содержимое скобок упростили по формуле 7).

Преобразовать выражение:

Мы применили формулу 7) и получили произведение суммы двух выражений на неполный квадрат разности этих выражений – формулу суммы кубов двух выражений:

a3 + b3 = (a + b)(a2 – ab + b2). У нас а = 1, b = tg2α.

Упростить:

8.1.4. Признаки параллелограмма

I.  Если две противоположные стороны четырехугольника параллельны и равны, то этот четырехугольник — параллелограмм.

Задача 1. Из вершин В и D параллелограмма  АBCD, у которого АВ≠ ВС и угол А — острый, проведены перпендикуляры  BK  и DM к прямой АС. Докажите, что четырехугольник BMDK — параллелограмм.

Доказательство.

Так как ВК и DM  перпендикулярны одной и той же прямой АС, то ВК II DM. Кроме того, ВК и DM являются высотами, проведенными в равных треугольниках  Δ АВС и Δ CDA из вершин равных углов ∠B  и ∠D к одной и той же стороне АС, следовательно, ВК = DM. Имеем: две стороны ВК и DM четырехугольника BMDK параллельны и равны, значит, BMDK – параллелограмм, что и требовалось доказать.

II.  Если противоположные стороны четырехугольника попарно равны, то этот четырехугольник — параллелограмм.

Задача 2. На сторонах AB, BC, CD и DA  четырехугольника ABCD отмечены соответственно точки M, N, P и Q так, что  AM=CP, BN=DQ, BM=DP, NC=QA. Докажите, что  ABCD и MNPQ — параллелограммы.

Доказательство.

1. По условию в четырехугольнике ABCD противоположные стороны состоят из равных отрезков, поэтому равны, т.е. AD=BC, AB=CD. Следовательно, ABCD – параллелограмм.

2. Рассмотрим Δ MBN и Δ PDQ. BM=DP и BN=DQ по условию. ∠B =∠D как противолежащие углы параллелограмма ABCD. Значит, Δ MBN = Δ PDQ по двум сторонам и углу между ними (1-й признак равенства треугольников). А в равных треугольниках против равных углов лежат равные стороны. Отсюда  MN=PQ. Мы доказали, что противоположные стороны MN и PQ четырехугольника MNPQ равны. Аналогично, из равенства треугольников Δ MAQ и Δ PCN следует равенство сторон MQ и PN, которые являются противоположными сторонами четырехугольника MNPQ. Имеем: противоположные стороны четырехугольника MNPQ попарно равны. Следовательно, четырехугольник MNPQ – параллелограмм. Задача решена.

III.  Если диагонали четырехугольника пересекаются и точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.

Задача 3. Диагонали параллелограмма ABCD пересекаются в точке O, Докажите, что четырехугольник MNPQ, вершинами которого являются середины отрезков OA, OB, OC и OD, — параллелограмм.

Доказательство.

По свойству диагоналей параллелограмма ABCD его диагонали AC и BD точкой пересечения делятся пополам, т.е. ОА=ОС и ОВ=OD. Диагонали четырехугольника MNPQ так же пересекаются в точке О, которая будет серединой каждой их них. Действительно, так как вершины четырехугольника MNPQ  по условию являются серединами отрезков ОА, ОС, ОВ и OD, то  BN=ON=OQ=DQ  и  AM=OM=OP=CP. Следовательно, диагонали MP и NQ четырехугольника MNPQ в точке пересечения делятся пополам, следовательно, четырехугольник MNPQ – параллелограмм, что и требовалось доказать.

8.1.3. Свойство углов и сторон параллелограмма

Задача 1. Один из углов параллелограмма равен 65°. Найти остальные углы параллелограмма.

Решение.

∠C =∠A = 65° как противоположные углы параллелограмма.

∠А +∠В = 180° как углы, прилежащие к одной стороне параллелограмма.

∠В = 180° — ∠А = 180° — 65° = 115°.

∠D =∠B = 115° как противолежащие углы параллелограмма.

Ответ: ∠А =∠С = 65°; ∠В =∠D = 115°.

Задача 2. Сумма двух углов параллелограмма равна 220°. Найти углы параллелограмма.

 Решение.

Так как у параллелограмма имеется  2 равных острых угла и 2 равных тупых угла, то нам дана сумма двух тупых углов, т.е. ∠В +∠D = 220°. Тогда ∠В =∠D = 220°: 2 = 110°.

∠А +∠В = 180° как углы, прилежащие к одной стороне параллелограмма, поэтому ∠А = 180° — ∠В = 180° — 110° = 70°. Тогда  ∠C =∠A = 70°.

Ответ: ∠А =∠С = 70°; ∠В =∠D = 110°.

Задача 3. Один из углов параллелограмма в 3 раза больше другого. Найти углы параллелограмма.

Решение.

Пусть ∠А =х. Тогда ∠В = 3х. Зная, что сумма углов параллелограмма, прилежащих к одной его стороне равна 180°, составим уравнение.

х + 3х = 180;

4х = 180;

х = 180 : 4;

х = 45.

Получаем: ∠А =х = 45°, а ∠В = 3х = 3 ∙ 45° = 135°.

Противолежащие углы параллелограмма равны, следовательно,

∠А =∠С = 45°; ∠В =∠D = 135°.

Ответ: ∠А =∠С = 45°; ∠В =∠D = 135°.

Задача 4. Докажите, что если у четырехугольника две стороны параллельны и равны, то этот четырехугольник – параллелограмм.

 Доказательство.

Проведем диагональ BD  и рассмотрим  Δ ADB и Δ CBD.

AD = BC по условию. Сторона BD – общая.  ∠1 = ∠2 как внутренние накрест лежащие при параллельных (по условию) прямых AD и BC и секущей BD. Следовательно, Δ ADB = Δ CBD по двум сторонам и углу между ними (1-й признак равенства треугольников).  В равных треугольниках соответственные углы равны, значит, ∠3 =∠4. А эти углы являются внутренними накрест лежащими при прямых AB и CD и секущей BD. Отсюда следует параллельность прямых AB и CD. Таким образом, в данном четырехугольнике ABCD противолежащие стороны попарно параллельны, следовательно, по определению ABCD – параллелограмм, что и требовалось доказать.

Задача 5. Две стороны параллелограмма относятся как 2 : 5, а периметр равен 3,5 м. Найти стороны параллелограмма.

Решение.

Периметр параллелограмма PABCD= 2 (AB + AD).

Обозначим одну часть через х. тогда AB = 2x, AD = 5x метров. Зная, что периметр параллелограмма равен 3,5 м, составим уравнение:

2 (2x + 5x) = 3,5;

2 7x = 3,5;

14x = 3,5;

x = 3,5 : 14;

x = 0,25.

Одна часть составляет 0,25 м. Тогда AB = 2 0,25 = 0,5 м; AD = 5 0,25 = 1,25 м.

Проверка.

Периметр параллелограмма PABCD= 2 (AB + AD) = 2 (0,25 + 1,25) = 2 1,75 = 3,5 (м).

Так как противоположные стороны параллелограмма равны, то CD = AB = 0,25 м; BC = AD = 1,25 м.

Ответ: CD = AB = 0,25 м; BC = AD = 1,25 м.

 

5.6.3. Решение задач на проценты. Часть В

Задача 1. Первое число составляет 80% от второго. А сколько процентов второе число составляет от первого?

Решение. Обозначим второе число через х. Тогда первое число по равно 0,8х. Найдем, сколько второе число составляет от первого. Для этого разделим второе число на первое, и результат умножим на 100%.

Ответ: второе число составляет 125% от первого.

Задача 2. На сколько процентов увеличится площадь квадрата, если его сторону увеличить на 30%?

Решение. Если сторона квадрата равна а, то площадь квадрата S=а2. После увеличения стороны на 30% ее длина составит 130% от а. Это 1,3а. Новая площадь S1=(1,3a)2=1,69a2. Разница составила 0,69а2. Обращаем десятичную дробь 0,69 в проценты и получаем 69%. Ответ: Если сторону квадрата увеличить на 30%, то площадь квадрата увеличится на 69%.

Задача 3. Яблоки, содержащие 70% воды, потеряли при сушке 60% своей массы. Сколько процентов воды содержат сушеные яблоки?

Решение. Пусть было х яблок по массе. В них содержится 70% воды, значит, 30% сухого концентрата. 30% от х – это 0,3х. После сушки яблок это количество 0,3х сухого вещества так и остается. Известно, что при сушке яблоки потеряли 60% своей массы. Следовательно, осталось 40% от х, Это 0,4х. То, что осталось, примем за 100%. В этой массе 0,3х сухого вещества. Узнаем, сколько это процентов.

В сушеных яблоках 75% сухого вещества, значит, воды в сушеных яблоках 100%-75%=25%. Ответ: в сушеных яблоках 25% воды.

Задача 4. Свежие грибы содержат 90% влаги, сушеные – 12%. Сколько сушеных грибов получится из 13,2 кг свежих?

Решение. Пусть из 13,2 кг свежих грибов получится х кг сушеных грибов. Тогда сухого вещества в х кг будет содержаться 100%-12%=88%. Получается 0,88х кг. В 13,2 кг свежих грибов сухого вещества содержится 100%-90%=10%. В килограммах получается 0,1∙13,2=1,32 кг. Имеем равенство: 0,88х=1,32, отсюда х=1,32 : 0,88;

х=1,5 кг. Ответ: из 13,2 кг свежих грибов получается 1,5 кг сушеных грибов.

Задача 5. Сколько литров воды нужно разбавить с 300 г соли для получения раствора с концентрацией 15%?

Решение. Пусть нужно х граммов воды разбавить с 300 г соли для получения раствора с концентрацией 15%. Выразим количество соли в х г воды 15%-го раствора. Это 15% от х. Получаем 0,15х г. По условию соли 300 г. Получаем равенство:

0,15х=300, отсюда х=300:0,15=30000:15=2000 г = 2 л воды.

Ответ: нужно разбавить 2 л воды.

Задача 6. В раствор сахарной воды массой 200 г с концентрацией 30% налили 100 г чистой воды. Сколько процентов составляет концентрация сахара в последнем растворе?

Решение. В 200 г сахарной воды с концентрацией 30% содержится 0,3∙200=60 г сахара. После того, как в раствор налили 100 г чистой воды, масса раствора стала равной 300 г, а сахара в нем по-прежнему 60 г. Найдем процентное отношение массы сахара к массе раствора.

Ответ: концентрация сахара в последнем растворе составляет 20%.

Задача 7. В раствор соленой воды массой 600 г с концентрацией 15% добавили раствор соленой воды массой 240 г с концентрацией 50%. Сколько процентов соли в полученной смеси?

Решение. В 600 г соленой воды с концентрацией 15% содержится 15% от 600 г соли. Это 0,15∙600=90 г соли. В 240 г соленой воды с концентрацией 50% содержится 50% от 240 г соли. Это 0,5∙240=120 г соли. Масса полученной смеси равна 600+240=840 г. Соли в этой массе 90+120=210 г. Найдем процент соли в полученной смеси.

Ответ: в полученной смеси содержится 25% соли.

Задача 8. Цену товара сначала снизили на 20%, затем новую цену снизили еще на 25%. На сколько процентов снизили первоначальную цену товара?

Решение. Обозначив первоначальную стоимость товара через х, выразим окончательную стоимость товара и найдем, сколько процентов последняя цена товара будет составлять от первоначальной. После первого снижения на 20%  товар стал стоить 80% от первоначальной цены. Это 80% от х или 0,8х Эту цену снизили еще на 25%, стоимость стала составлять 75% от последней цены, равной 0,8х. Тогда последняя цена составит 75% от 0,8х или 0,75∙0,8х=0,6х. Находим, сколько процентов 0,6х (последняя цена товара) составляет от х (первоначальной цены товара).

Получается, что новая цена составляет 60% от первоначальной цены. Это означает, что цена товара после двух снижений уменьшилась на 40%. Ответ: цену товара снизили на 40%.

Задача 9. Число увеличили на 25%. На сколько процентов нужно уменьшить полученное число, чтобы вновь получилось заданное?

Решение. Пусть заданное число было равно х. После увеличения оно составит 1,25х (это 125% от х). Выясним, сколько процентов от  числа 1,25х нужно взять, чтобы опять получить х. Получается, что:

Так как х составляет от 1,25х только 80%, то это означает, что, для того, чтобы получить заданное число, нужно полученное число уменьшить на 100%-80%=20%.   Ответ: на 20%.

Если вы хотите научиться решать задачи на проценты, то полезной будет эта книга: перейдите по ссылке.

5.6.2. Решение задач на проценты. Часть А

Задача 1. Вода составляет 76% картофеля. Сколько килограммов воды в 35 кг картофеля?

Решение. Вода составляет 76% от 35 кг. По правилу нахождения процентов от данного числа (чтобы найти проценты от данного числа нужно обратить проценты в десятичную или обыкновенную дробь, а затем умножить данное число на эту дробь) получаем  0,76∙35=26,6 кг.

Ответ: в 35 кг картофеля содержится 26,6 кг воды.

Задача 2. В классе 28 учеников. 75% из них занимаются спортом. Сколько учеников в классе занимаются спортом?

Решение. Так как 75%=0,75, то умножая число 28 на дробь 0,75 получаем: 0,75·28=21.

Получается, что 21 человек посещает спортивные кружки.

Ответ: 21 ученик в классе занимается спортом.

Задача 3. В классе 20 человек. Контрольную работу по математике 25% учащихся написали на «5», 35 % написали на «4», 10% всех учащихся получили «2». Сколько пятерок, четверок, троек и двоек получил класс?

Решение. Количество пятерок составляет 25% от 20. По правилу нахождения процентов от данного числа это 0,25∙20=5 учащихся. Четверки получили 35% от 20. Это 0,35∙20=7 учащихся. Двоек 10%. Это  1/10 часть от 20 учащихся, т.е. 2 человека. Остальные учащиеся получили оценку «3». Их 20-5-7-2=6 человек.

Ответ: оценку «5» получило 5 учащихся; оценку «4» получили 7 учащихся; оценку «3» получило 6 учащихся и оценку «2» получили 2 ученика.

Задача 4. В школьной библиотеке 5780 учебников, что составляет 85% всех книг, имеющихся в библиотеке. Сколько всего книг в школьной библиотеке?

Решение. Потребуется найти число по его процентам. Применяем правило нахождения числа по его процентам (чтобы найти число по его процентам нужно обратить проценты в десятичную дробь, а затем разделить данное число на эту дробь). 1) 85%=0,85; 2) 5780:0,85=578000:85=6800 книг.

Ответ: всего в библиотеке 6800 книг.

Задача 5. Токарю нужно было сделать 120 деталей, но он перевыполнил план на 10%. Сколько деталей изготовил токарь?

Решение. 10% от 120 деталей – это одна десятая часть от 120, т.е. это 12 деталей. Токарь изготовил 120+12=132 детали.

Ответ: 132 детали изготовил токарь.

Задача 6. Фирма платит рекламным агентам 5% от стоимости заказа. На какую сумму нужно выполнить заказ, чтобы заработать 2000 рублей?

Решение. 2000 рублей – это 5% от заказа. Число (все его 100%) по его процентам мы найдем по правилу нахождения числа по его процентам. Обращаем 5% в десятичную дробь и делим 2000 на эту дробь. 1) 5%=0,05; 2) 2000:0,05=200000:5=40000.

Ответ: заказ должен быть на сумму 40000 рублей.

Задача 7. После уценки на 10% цена холодильника стала 11430 рублей. Какова была цена холодильника  до уценки?

Решение. Имеем: 11430 рублей – это 90% от начальной цены холодильника. Находим число по его процентам. 1) 90%=0,9; 2) 11430:0,9=114300:9=12700 рублей.

Ответ: до уценки холодильник стоил 12700 рублей.

Задача 8. Сколько процентов число 36 составляет от 48?

Решение. По соответствующему правилу: чтобы найти, сколько процентов составляет первое число от второго нужно первое число разделить на второе и результат умножить на 100% —  записываем:

Ответ: 75% составляет число 36 от числа 48.

Задача 9. За 1 час станок-автомат изготовлял 240 деталей. После реконструкции этого станка он стал изготовлять в час 288 таких же деталей. На сколько процентов повысилась производительность станка?

Решение. Производительность станка повысилась на 288-240=48 деталей в час. Нужно узнать, сколько процентов от 240 деталей составляют 48 деталей. Для того чтобы узнать, сколько процентов число 48 составляет от числа 240 нужно число 48 разделить на 240 и результат умножить на 100%.

Ответ: производительность станка повысилась на 20%.

Еще больше задач на проценты + видео.

 

6.3.4. Как записать число в виде десятичной дроби

Чтобы рациональное число m/n записать в виде десятичной дроби, нужно числитель разделить на знаменатель. При этом частное записывается  конечной или бесконечной десятичной дробью.

Пример 1. Записать данное число в виде десятичной дроби.

Решение. Разделим в столбик числитель каждой дроби на ее знаменатель: а) делим 6 на 25; б) делим 2 на 3; в) делим 1 на 2, а затем получившуюся дробь припишем к единице — целой части данного смешанного числа.

Несократимые обыкновенные дроби, знаменатели которых не содержат других простых делителей, кроме 2 и 5, записываются конечной десятичной дробью.

В примере 1 в случае а) знаменатель 25=5·5; в случае в) знаменатель равен 2, поэтому, мы получили конечные десятичные дроби 0,24 и 1,5. В случае б) знаменатель равен 3, поэтому результат нельзя записать в виде конечной десятичной дроби.

А можно ли без деления в столбик обратить в десятичную дробь такую обыкновенную дробь, знаменатель которой не содержит других делителей, кроме 2 и 5? Разберемся! Какую дробь называют десятичной и записывают без дробной черты? Ответ: дробь со знаменателем 10; 100; 1000 и т.д. А каждое из этих чисел — это произведение равного количества «двоек» и «пятерок». На самом деле: 10=2·5; 100=2·5·2·5; 1000=2·5·2·5·2·5 и т.д.

Следовательно, знаменатель несократимой обыкновенной дроби нужно будет представить в виде произведения «двоек» и «пятерок», а затем домножить на 2 и (или) на 5 так, чтобы «двоек» и «пятерок» стало поровну. Тогда  знаменатель дроби будет равен 10 или 100 или 1000 и т.д. Чтобы значение дроби не изменилось — числитель дроби умножим на то же число, на которое умножили знаменатель.

Пример 2. Представить в виде десятичной дроби следующие обыкновенные дроби:

Решение. Каждая из данных дробей является несократимой.  Разложим знаменатель каждой дроби на простые множители.

20=2·2·5. Вывод: не хватает одной «пятерки».

8=2·2·2.  Вывод: не хватает трех «пятерок».

25=5·5. Вывод: не хватает двух «двоек».

Замечание. На практике чаще не используют разложение знаменателя на множители, а просто задаются вопросом: на сколько нужно умножить знаменатель, чтобы в результате получилась единица с нулями (10 или 100 или 1000 и т.д.). А затем на это же число умножают и числитель.

Так, в случае  а) (пример 2) из числа 20 можно получить 100 умножением на 5, поэтому, на 5 нужно умножить числитель и знаменатель.

В случае б) (пример 2) из числа 8 число 100 не получится, но получится число 1000 умножением на 125. На 125 умножается и числитель (3) и знаменатель (8) дроби.

В случае в) (пример 2) из 25 получится 100, если умножить на 4. Значит, и числитель 8 нужно умножить на 4.

Бесконечная десятичная дробь, у которой одна или несколько цифр неизменно повторяются в одной и той же последовательности, называется периодической десятичной дробью. Совокупность повторяющихся цифр называется периодом этой дроби. Для краткости период дроби записывают один раз, заключая его в круглые скобки.

В случае б) (пример 1) повторяющаяся цифра одна и равна 6. Поэтому, наш результат 0,66... запишется так: 0,(6). Читают: нуль целых, шесть в периоде.

 Если между запятой и первым периодом есть одна или несколько не повторяющихся цифр, то такая периодическая дробь называется смешанной периодической дробью.

Несократимая обыкновенная дробь, знаменатель которой вместе с другими множителями содержит множитель 2 или 5, обращается в смешанную периодическую дробь.

Пример 3. Записать в виде десятичной дроби числа:

Любое рациональное число можно записать в виде бесконечной периодической десятичной дроби.

Пример 4. Записать в виде бесконечной периодической дроби числа:

Решение.

6.3.3. Деление рациональных чисел

Деление отрицательных чисел.

Частное двух отрицательных чисел есть число положительное. Модуль частного равен частному модулей делимого и делителя.

Так как частное двух положительных чисел — это тоже число положительное, то делаем ВЫВОД:

Частное двух чисел с одинаковыми знаками есть число положительное. Модуль частного равен частному модулей делимого и делителя.

Пример 1. Выполнить деление (устно):

а) -24:(-10); б) -370: (-1000); в) -253: (-11); г) -18,72: (-6).

Решение. Знак результата «+» (по  правилу деления отрицательных чисел). В примерах а) и б) используем правило деления числа на 10, 100, 1000 и т. д. Если забыли — смотрите здесь. В примере в) вспомните, как умножается двузначное число на 11 (цифры двузначного числа раздвигаются и между ними ставится число, равное сумме двух крайних цифр).

а) -24:(-10)=2,4; б) -370: (-1000)=0,37; в) -253: (-11)=23; г) -18,72: (-6)=3,12.

Пример 2. Вычислить:

Решение. По правилу деления отрицательных чисел результат будет положительным числом. Модуль частного в примерах а) и б) вычисляем по правилу деления на десятичную дробь. Повторить это можно здесь. В примерах в) и г)  вначале обращаем смешанные числа в неправильные дроби, а затем используем правило деления обыкновенных дробей. Если забыли, как это делается, смотрите здесь! 

 Деление чисел с разными знаками.

Частное двух чисел с разными знаками есть число отрицательное. Модуль частного равен частному модулей делимого и делителя.

ВЫВОД: и при умножении и при делении двух чисел с разными знаками — ответ будет со знаком «-».

Пример 3. Найти частное чисел:

Решение. Применяйте правила, решайте самостоятельно и только потом сверяйтесь с приведенным ниже решением.

Все получилось? Продолжим.

Пример 4. Вычислить:

Решайте и сверяйтесь!

Решение.

Желаю успехов в учебе! 

6.3.2. Умножение рациональных чисел

Умножение отрицательных чисел.

Произведение двух отрицательных чисел есть число положительное. Модуль произведения равен произведению модулей данных чисел.

Так как произведение положительных чисел — это тоже положительное число, то сделаем ВЫВОД:

Произведение двух чисел с одинаковыми знаками есть число положительное. Модуль этого числа равен произведению модулей данных чисел.

Пример 1.  Выполните умножение (устно):

а) -12·(-10); б) -0,05·(-100); в) -3,5·(-2); г) -0,12·(-0,5).

Решение. При решении всех примеров пользуемся правилом произведения двух отрицательных чисел. При решением примеров а) и б) применяем правило умножения десятичной дроби на 10, 100, 1000 и т.д. При решении примеров в) и г) применим правило умножения десятичной дроби на десятичную дробь. Если забыли, как это делается - смотрите здесь!

а) -12·(-10)=120; б) -0,05·(-100)=5; в) -3,5·(-2)=7; г) -0,12·(-0,5)=0,06.

Пример 2.  Вычислить:

Решение. Смешанное число в примере б) обратим в неправильную дробь. В примере в) вторую степень дроби заменим произведением двух одинаковых дробей. В примере г) четвертую степень дроби представим в виде произведения четырех одинаковых множителей.

Умножение чисел с разными знаками.

Произведение двух чисел с разными знаками есть число отрицательное. Модуль произведения равен произведению модулей данных чисел.

Пример 3. Вычислить устно:

а) -10·0,35; б) 4,1·(-100); в) 2,5·(-0,4); г) -0,05·200.

Решение. Применяем правило умножения двух чисел с разными знаками. Перемножим модули множителей и перед результатом поставим знак «минус».

а) -10·0,35=-3,5;  б) 4,1·(-100)=-410;  в) 2,5·(-0,4)=-1;  г) -0,05·200=-10.

Пример 4.  Вычислить:

Решение.

ЗАПОМНИЛИ:

Произведение двух чисел с одинаковыми знаками есть число положительное.

 Произведение двух чисел с разными знаками есть число отрицательное.

9.3.3. Определение арифметической прогрессии. Примеры

Числовую последовательность, каждый член которой, начиная со второго, равен предыдущему, сложенному с одним и тем же для данной последовательности числом d, называют арифметической прогрессией. Число называют разностью арифметической прогрессии. В арифметической прогрессии {an}, т. е. в арифметической прогрессии с членами:  a1, a2, a3, a4, a5, …, an-1, an, …   по определению:

a2=a1+d;

a3=a2+d;

a4=a3+d;

a5=a4+d;

..............…

an=an-1+d; …

Из определения арифметической прогрессии следует, что разность между любым ее членом, начиная со второго, и предшествующим ему членом равна некоторому числу d, которое является постоянным для данной последовательности чисел, и называется разностью арифметической прогрессии. Итак, справедливы равенства:

a2-a1=d;

a3-a2=d;

a4-a3=d;

……….

an+1-an=d.

Чтобы задать арифметическую прогрессию, достаточно указать ее первый член aи разность d.

Пример 1. Написать первые пять членов арифметической прогрессии, зная первый член aи разность d.

а) a1=2, d=3.

Решение.  По условию разность арифметической прогрессии  d=3. Это означает, что для получения каждого следующего члена нужно прибавлять число 3 к предыдущему члену.

a2=a1+d=2+3=5;

a3=a2+d=5+3=8;

a4=a3+d=8+3=11;

a5=a4+d=11+3=14. Ответ: 2; 5; 8; 11; 14; ...

б) a1=-7, d=2.

Решение. 

a2=a1+d=-7+2=-5;

a3=a2+d=-5+2=-3;

a4=a3+d=-3+2=-1;

a5=a4+d=-1+2=1. Ответ: -7; -5; -3; -1; 1; ...

в) a1=-10, d=-2.

Решение.

a2=a1+d=-10-2=-12;

a3=a2+d=-12-2=-14;

a4=a3+d=-14-2=-16;

a5=a4+d=-16-2=-18. Ответ: -10; -12; -14; -16; -18; ...

Пример 2. Известны два члена арифметической прогрессии {an}. Требуется найти первый член aи разность d.

а) a2=7, a3=-3.

Решение. По определению арифметической прогрессии можно найти ее разность:

d=a3-a2=-3-7=-10. Тогда a1=a2-d=7- (-10)=7+10=17. Ответ: a1=17, d=-10.

б) a3=-12, a4=-16.

Решение. d=a4-a3=-16- (-12)=-16+12=-4; отсюда a2=a3-d=-12- (-4)=-12+4=-8;

a1=a2-d=-8- (-4)=-8+4=-4. Ответ: a1=-4, d=-4.

в) a2=-4, a4=6.

Решение. Так как a4=a3+d; а в свою очередь a3=a2+d, то можно записать:

a4=a2+d+d; a4=a2+2d ⇒ 2d=a4- a2=6- (-4)=6+4=10 ⇒ d=10:2=5.

Тогда a1=a2-d=-4-5=-9. Ответ: a1=-9, d=5.

Страница 2 из 1412345...10...Последняя »
Архивы
Наверх