математика-повторение

Закрепляем и систематизируем знания основ школьной математики.

8.2.3. Теорема Виета

I. Теорема Виета для приведенного квадратного уравнения.

Сумма корней приведенного квадратного уравнения x2+px+q=0 равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену:

x1+x2=-p;  x1∙x2=q.

 Найти корни приведенного квадратного уравнения, используя теорему Виета.

Пример 1) x2-x-30=0. Это приведенное квадратное уравнение ( x2+px+q=0), второй коэффициент  p=-1, а свободный член q=-30. Сначала убедимся, что данное уравнение имеет корни, и что корни (если они есть) будут выражаться целыми числами. Для этого достаточно, чтобы дискриминант был полным квадратом целого числа.

Находим дискриминант D=b2— 4ac=(-1)2-4∙1∙(-30)=1+120=121=112.

Теперь по теореме Виета сумма корней должна быть равна второму коэффициенту, взятому с противоположным знаком, т.е. (-p), а произведение равно свободному члену, т.е. (q). Тогда:

x1+x2=1; x1∙x2=-30. Нам надо подобрать такие два числа, чтобы их произведение было равно -30, а сумма – единице. Это числа -5 и 6. Ответ: -5; 6.

Пример 2) x2+6x+8=0. Имеем приведенное квадратное уравнение со вторым коэффициентом р=6 и свободным членом q=8. Убедимся, что есть целочисленные корни. Найдем дискриминант D1, так как второй коэффициент – четное число. D1=32-1∙8=9-8=1=12. Дискриминант Dявляется полным квадратом числа 1, значит, корни данного уравнения являются целыми числами. Подберем корни по теореме Виета: сумма корней равна –р=-6, а произведение корней равно q=8. Это числа -4 и -2.

На самом деле: -4-2=-6=-р; -4∙(-2)=8=q. Ответ: -4; -2.

Пример 3) x2+2x-4=0. В этом приведенном квадратном уравнении второй коэффициент р=2, а свободный член q=-4. Найдем дискриминант D1, так как второй коэффициент – четное число. D1=12-1∙(-4)=1+4=5. Дискриминант не является полным квадратом числа, поэтому, делаем вывод: корни данного уравнения не являются целыми числами и найти их по теореме Виета нельзя. Значит, решим данное уравнение, как обычно, по формулам (в данном случае по формулам для частного случая с четным вторым коэффициентом). Получаем:

Пример 4). Составьте квадратное уравнение по его корням, если x1=-7, x2=4.

Решение. Искомое уравнение запишется в виде: x2+px+q=0, причем, на основании теоремы Виета –p=x1+x2=-7+4=-3 → p=3; q=x1∙x2=-7∙4=-28. Тогда уравнение примет вид: x2+3x-28=0.

Пример 5). Составьте квадратное уравнение по его корням, если:

II. Теорема Виета для полного квадратного уравнения ax2+bx+c=0.

Сумма корней равна минус b, деленному на а, произведение корней равно с, деленному на а:

x1+x2=-b/a;  x1∙x2=c/a.

Пример 6). Найти сумму корней квадратного уравнения 2x2-7x-11=0.

Решение.

Убеждаемся, что данное уравнение будет иметь корни. Для этого достаточно составить выражение для дискриминанта, и, не вычисляя его, просто убедиться, что дискриминант больше нуля. D=72-4∙2∙(-11)>0. А теперь воспользуемся теоремой Виета для полных квадратных уравнений.

x1+x2=-b:a=- (-7):2=3,5.

Пример 7). Найдите произведение корней квадратного уравнения 3x2+8x-21=0.

Решение.

Найдем дискриминант D1, так как второй коэффициент (8) является четным числом. D1=42-3∙(-21)=16+63=79>0. Квадратное уравнение имеет 2 корня, по теореме Виета произведение корней x1∙x2=c:a=-21:3=-7.     

8.2.2. Решение полных квадратных уравнений

I. ax2+bx+c=0 – квадратное уравнение общего вида

Дискриминант D=b2— 4ac.

Если D>0, то имеем два действительных корня:

Если D=0, то имеем единственный корень (или два равных корня) х=-b/(2a).

Если D<0, то действительных корней нет.

Пример 1)  2x2+5x-3=0. 

Решение. a=2; b=5; c=-3.

D=b2— 4ac=52-4∙2∙(-3)=25+24=49=72>0; 2 действительных корня.

Пример 2)  4x2+21x+5=0.

Решение. a=4; b=21; c=5.

D=b2— 4ac=212— 4∙4∙5=441-80=361=192>0; 2 действительных корня.

II.  ax2+bx+c=0 – квадратное уравнение частного вида при четном втором

коэффициенте b

Пример 3)  3x2-10x+3=0.

Решение. a=3; b=-10 (четное число); c=3.

Пример 4) 5x2-14x-3=0.

Решение. a=5; b= -14 (четное число); c=-3.

Пример 5)  71x2+144x+4=0.

Решение. a=71; b=144 (четное число); c=4.

Пример 6) 9x2-30x+25=0.

Решение. a=9; b=-30 (четное число); c=25.

III.  ax2+bx+c=0 – квадратное уравнение частного вида при условии: a-b+c=0. 

Первый корень всегда равен минус единице, а второй корень равен минус с, деленному на а:

x1=-1, x2=-c/a.

Пример 7)  2x2+9x+7=0.

Решение. a=2; b=9; c=7. Проверим равенство: a-b+c=0. Получаем: 2-9+7=0.

Тогда x1=-1, x2=-c/a=-7/2=-3,5. Ответ: -1; -3,5.

IV.  ax2+bx+c=0 – квадратное уравнение частного вида при условии: a+b+c=0. 

Первый корень всегда равен единице, а второй корень равен с, деленному на а:

x1=1, x2=c/a.

Пример 8 )  2x2-9x+7=0.

Решение. a=2; b=-9; c=7. Проверим равенство: a+b+c=0. Получаем: 2-9+7=0.

Тогда x1=1, x2=c/a=7/2=3,5. Ответ: 1; 3,5.

10.3.0. Вычисление производных

На этом занятии мы будем учиться применять формулы и правила дифференцирования.

Примеры. Найти производные функций.

1. y=x7+x5-x4+x3-x2+x-9. Применяем правило I, формулы 4, 2 и 1. Получаем:

y’=7x6+5x4-4x3+3x2-2x+1.

2. y=3x6-2x+5. Решаем аналогично, используя те же формулы и формулу 3.

y’=3∙6x5-2=18x5-2.

Применяем правило I,  формулы 3, 5 и 6 и 1.

 

 Применяем правило IV, формулы 5 и 1.

 

В пятом примере по правилу I производная суммы равна сумме производных,  а производную 1-го слагаемого мы только что находили (пример 4), поэтому, будем находить производные  2-го и 3-го слагаемых, а для 1-го слагаемого можем сразу писать результат.

Дифференцируем 2-ое и 3-е слагаемые по формуле 4. Для этого преобразуем корни третьей и четвертой степеней в знаменателях к степеням с отрицательными показателями, а затем, по 4 формуле, находим производные степеней.

Посмотрите на данный пример и полученный результат. Уловили закономерность? Хорошо. Это означает, что мы получили новую формулу и можем добавить ее в нашу таблицу производных.

Решим шестой пример и выведем еще одну  формулу.

Используем правило IV и формулу 4. Получившиеся дроби сократим.

Смотрим на данную функцию и на ее производную. Вы, конечно, поняли закономерность и готовы назвать формулу:

Учим новые формулы!

 

6.1.6. Множество и его элементы

I.  Множество представляет собой совокупность некоторых предметов или чисел, составленных по каким-либо общим свойствам или законам (множество букв на странице, множество правильных дробей со знаменателем 5, множество звезд на небе и т.д.).

Для записи множества используют фигурные скобки: «{ »- множество открывается; "}" — множество закрывается. А само множество называют заглавными латинскими буквами: А, В, С и так далее.

Примеры.

1. Записать множество А, состоящее из всех гласных букв в слове «математика».

Решение.  А={а, е, и}.  Вы видите: несмотря на то,что в слове «математика» имеется три буквы «а» — в записи множества повторений не допускается,  и буква «а» записывается только один раз. Множество А состоит из трех элементов.

2. Записать множество всех правильных дробей со знаменателем 5.

Решение. Вспоминаем: правильной называют обыкновенную дробь, у которой числитель меньше знаменателя. Обозначим через В искомое множество. Тогда:

 Множество В состоит из четырех элементов.

II. Множества состоят из элементов и бывают конечными или бесконечными. Множество, которое не содержит ни одного элемента, называют пустым множеством и обозначают Ø. 

III. Множество В называют подмножеством множества А, если все элементы множества В являются элементами множества А. 

3. Какое из двух данных множеств В и С является подмножеством множества К,

если В={-1; 3; 4}, C={0; 3; 4; 5), K={0; 2; 3; 4; 5; 6} ?

Решение. Все элементы множества С являются также элементами множества К, поэтому, множество С является подмножеством множества К. Записывают:

IV. Пересечением множеств А и В называется множество, элементы которого принадлежат и множеству А и множеству В.

4. Показать пересечение двух множеств М и F с помощью кругов Эйлера.

Решение. 

V. Объединением множеств А и В называется множество, элементы которого принадлежат хотя бы одному из данных множеств А и В.

5. Показать с помощью кругов Эйлера объединение  множеств Т и Р.

Решение.

 

5.5.7. Округление чисел

Чтобы округлить число до какого-либо разряда – подчеркнем цифру этого разряда, а затем все цифры, стоящие за подчеркнутой, заменяем нулями, а если они стоят после запятой – отбрасываем. Если первая замененная нулем или отброшенная цифра равна 0, 1, 2, 3 или 4, то подчеркнутую цифру оставляем без изменения. Если первая замененная нулем или отброшенная цифра равна 5, 6, 7, 8 или 9, то подчеркнутую цифру увеличиваем на 1.

Примеры.

Округлить до целых:

1) 12,5;   2) 28,49;   3) 0,672;  4) 547,96;   5) 3,71.

Решение. Подчеркиваем цифру, стоящую в разряде единиц (целых) и смотрим на цифру, стоящую за ней. Если это цифра 0, 1, 2, 3 или 4, то подчеркнутую цифру оставляем без изменения, а все цифры после нее отбрасываем. Если же за подчеркнутой цифрой стоит цифра 5 или 6 или 7 или 8 или 9, то подчеркнутую цифру увеличим на единицу.

1) 12,5≈13;

2) 28,49≈28;

3) 0,672≈1;

4) 547,96≈548;

5) 3,71≈4.

Округлить до десятых:

6) 0, 246;   7) 41,253;   8 ) 3,81;   9) 123,4567;   10) 18,962.

Решение. Подчеркиваем цифру, стоящую в разряде десятых, а затем поступаем согласно правилу: все стоящие после подчеркнутой цифры отбросим. Если за подчеркнутой цифрой была цифра 0 или 1 или 2 или 3 или 4, то подчеркнутую цифру не изменяем. Если за подчеркнутой цифрой шла цифра 5 или 6 или 7 или 8 или 9, то подчеркнутую цифру увеличим на 1.

6) 0, 246≈0,2;

7) 41,253≈41,3;

8 ) 3,81≈3,8;

9) 123,4567≈123,5;

10) 18,962≈19,0.  За девяткой стоит шестерка, поэтому, девятку увеличиваем на 1. (9+1=10) нуль пишем, 1 переходит в следующий разряд и будет 19. Просто 19 мы в ответе записать не можем, так как должно быть понятно, что мы округляли до десятых — цифра в разряде десятых должна быть. Поэтому, ответ: 19,0.

Округлить до сотых:

11) 2, 045;   12) 32,093;   13) 0, 7689;   14)  543, 008;  15)  67, 382.

Решение. Подчеркиваем цифру в разряде сотых и, в зависимости от того, какая цифра стоит после подчеркнутой, оставляем подчеркнутую цифру без изменения (если за ней 0, 1, 2, 3 или 4) или  увеличиваем подчеркнутую цифру на 1 (если за ней стоит 5, 6, 7, 8 или 9).

11) 2, 045≈2,05;

12) 32,093≈32,09;

13) 0, 7689≈0,77;

14)  543, 008≈543,01;

15)  67, 382≈67,38.

Важно:  в ответе последней должна стоять цифра в том разряде, до которого вы округляли.

 

5.5.6. Деление на десятичную дробь

I.  Чтобы разделить число на десятичную дробь, нужно перенести запятые в делимом и делителе на столько цифр вправо, сколько их стоит после запятой в делителе, а затем выполнить деление на натуральное число.

Примеры.

Выполнить деление: 1) 16,38:0,7;   2) 15,6:0,15;    3) 3,114:4,5;   4) 53,84:0,1.

Решение. 

Пример 1)  16,38:0,7.

В делителе 0,7 после запятой стоит одна цифра, поэтому, перенесем запятые в делимом и делителе на одну цифру вправо.

Тогда нам нужно будет разделить 163,8 на 7.

Выполним деление по правилу деления десятичной дроби на натуральное  число.

Делим так, как делят натуральные числа. Как снесем цифру 8 — первую цифру после запятой (т.е. цифру в разряде десятых), так сразу поставим в частном запятую и продолжим деление.

Ответ: 23,4.

 

Пример 2) 15,6:0,15.

Переносим запятые в делимом (15,6) и делителе (0,15) на две цифры вправо, так как в делителе 0,15 после запятой стоят две цифры.

Помним, что справа к десятичной дроби можно приписать сколько угодно нулей, и от этого десятичная дробь не изменится.

Тогда:

15,6:0,15=1560:15.

Выполняем деление натуральных чисел.

Ответ: 104.

 

Пример 3) 3,114:4,5.

Перенесем запятые в делимом и делителе на одну цифру вправо и разделим 31,14 на 45 по правилу деления десятичной дроби на натуральное число.

Итак:

3,114:4,5=31,14:45.

В частном поставим запятую сразу, как сносим цифру 1 в разряде десятых. Затем продолжаем деление.

Чтобы закончить деление нам пришлось приписать нуль к числу 9 — разности чисел 414 и 405. (мы знаем, что справа к десятичной дроби можно приписывать нули)

 

Ответ: 0,692.

Пример 4)  53,84:0,1.

Переносим запятые в делимом и делителе на 1 цифру вправо.

Получаем: 538,4:1=538,4. 

Проанализируем равенство: 53,84:0,1=538,4. Обращаем внимание на запятую в делимом в данном примере и на запятую в полученном частном. Замечаем, что запятая в делимом перенесена на 1 цифру вправо, как если бы мы умножали 53,84 на 10. (Смотрите видео «Умножение десятичной дроби на 10, 100, 1000 и т.д.») Отсюда правило деления десятичной дроби на 0,1; 0,01; 0,001 и т.д.

II. Чтобы разделить десятичную дробь на 0,1; 0,01; 0,001 и т. д., нужно перенести запятую вправо на 1, 2, 3 и т. д. цифр. (Деление десятичной дроби на 0,1; 0,01; 0,001 и т. д. равносильно умножению этой десятичной дроби на 10, 100, 1000 и т.д.)

Примеры.

Выполнить деление: 1) 617,35:0,1;  2) 0,235:0,01;  3) 2,7845:0,001;  4) 26,397:0,0001.

Решение.

Пример 1) 617,35:0,1.

Согласно правилу II деление на 0,1 равносильно умножению на 10, и запятую в делимом перенесем на 1 цифру вправо:

1) 617,35:0,1=6173,5.

Пример 2) 0,235:0,01.

Деление на 0,01 равносильно умножению на 100, значит, запятую в делимом перенесем на 2 цифры вправо:

2) 0,235:0,01=23,5.

Пример 3) 2,7845:0,001.

Так как деление на 0,001 равносильно умножению на 1000, то перенесем запятую на 3 цифры вправо:

3) 2,7845:0,001=2784,5.

Пример 4) 26,397:0,0001.

Разделить  десятичную дробь на 0,0001 — это все равно, что умножить ее на 10000 (переносим запятую на 4 цифры вправо). Получаем:

4) 26,397:0,0001=263970.

Смотрите видео «Деление на десятичную дробь»

6.1.5. Обратно пропорциональные величины

I. Обратно пропорциональные величины.

Пусть величина у зависит от величины х. Если при увеличении х в несколько раз величина у уменьшается во столько же раз, то такие величины х и у называются обратно пропорциональными.

Примеры.

1. Скорость и время при одинаковой длине пути. Если от А до В 200 км, то при скорости 50 км/ч понадобится 4 часа, а при скорости 40 км/ч понадобится 5 часов, т.е. если скорость уменьшается, то время увеличивается, а если скорость увеличивается, то время уменьшается. Это изобразится так:

2. Количество рабочих и время при определенном объеме работ. Если шести рабочим нужно на выполнение определенной работы 4 часа, то трем рабочим на выполнение той же работы потребуется 8 часов, т.е. чем меньше работников, тем больше нужно времени, чтобы выполнить определенную работу.

Смысл: во сколько раз стало меньше рабочих (в 2 раза), во столько же раз больше (в 2 раза) времени потребуется.

 

3) Длина и ширина прямоугольника при постоянной площади прямоугольника. Если площадь участка прямоугольной формы с длиной 8 м, равна 48 м², то его ширина будет равна (48:8=6)м. Если же длину взять больше в 2 раза (16 м), то ширина уменьшится тоже в 2 раза (48:16=3)м.

II. Свойство обратной пропорциональности величин.

Если две величины находятся в обратно пропорциональной зависимости, то отношение двух произвольно взятых значений одной величины равно обратному отношению соответствующих значений другой величины.

Задача 1. Изготавливая по 42 детали в час, рабочий трудился 8 часов. Сколько времени ему понадобилось бы на эту же работу, если бы он делал в час по 48 деталей?

Решение. Составим схему по условию задачи:

42 детали в час -------- 8 часов.

48 деталей в час -------  х часов.

Имеем обратно пропорциональную зависимостьво сколько раз больше деталей в час рабочий будет изготавливать, во столько же раз меньше ему потребуется времени на одну и ту же работу. Используя свойство обратной пропорциональности, запишем:

Ответ: рабочий выполнит ту же работу за 7 часов.

Задача 2. Бассейн можно наполнять через одну из двух труб.Через первую трубу, со скоростью 2 литра в 1 секунду, бассейн наполняется за 45 минут. Какова  скорость наполнения бассейна  через вторую трубу, если весь бассейн наполняется через вторую трубу за 1 час 15 минут.

Решение. 

По условию задачи через первую трубу в бассейн вытекает 2 литра за 1 секунду или 2·60=120 литров за 1 минуту (1 минута=60 секунд), и бассейн наполняется за 45 минут.

Через вторую трубу бассейн наполняется за 1 час 15 минут. Времени требуется больше, значит, скорость наполнения меньше. Имеем обратно пропорциональные величины: скорость наполнения и время наполнения бассейна. Обозначим скорость наполнения бассейна через вторую трубу через х.

120 литров в минуту -------- 45 минут;

х литров в минуту --------- 75 минут.   (1 час 15 минут = 60 минут + 15 минут = 75 минут).

Во сколько раз скорость наполнения меньше, во столько раз больше потребуется времени для заполнения бассейна.

Мы нашли скорость наполнения бассейна через вторую трубу в литрах в минуту. Итак, через вторую трубу бассейн наполняется со скоростью 72 литра в минуту или 72:60=1,2 литров в секунду.

Ответ: через вторую трубу в бассейн вливается 1,2 литра в 1 секунду.  

6.1.4. Масштаб

Отношение длины отрезка на карте к длине соответствующего расстояния на местности называют масштабом карты.

В соответствии со своим масштабом карты так и называют: пятитысячная, десятитысячная и т.д.

Пятитысячная карта, т. е. карта с масштабом 1:5000 означает, что 1 см на карте соответствует 5000 см на местности. Но мы не меряем расстояния на местности в сантиметрах. Переводим 5000 см в метры. Так как 1 м = 100 см, то 5000 см=50 м. Следовательно, 50 м на местности изображены на пятитысячной карте отрезком, равным 1 см. Что же можно изобразить на пятитысячной карте? Например, наш сквер, имеющий прямоугольную форму с размерами 600 м х 200 м (длина сквера 600 метров, а ширина 200 метров). На карте с масштабом 1:5000 сквер будет изображен прямоугольником длиной 12 см (600:50=12) и шириной 4 см (200:50=4).

На десятитысячной карте, т.е. карте с масштабом 1:10000 можно изобразить лесопарк. 1 см на этой карте означает 10000 см или 100 м на местности.

Как «читать» эту карту? Найдем расстояние между интересующими нас объектами в сантиметрах и умножим на 10000 (см), а затем переведем в метры.

На двадцатипятитысячных, пятидесятитысячных картах изображают небольшие населенные пункты.

На стотысячных, двухсоттысячных картах можно изображать крупные города.

Одному сантиметру стотысячной карты соответствуют 100 000 см на местности. Переведем в метры: 100 000 см = 1000 м, а затем в километры: 1000 м=1 км.

Итак, 100 000 см=1 км. Сделаем вывод: чтобы перевести число сантиметров в километры, нужно разделить это число на 100 000 (или просто «убрать» пять нулей). Теперь нам проще будет представить масштабирование 1:100 000. На 1 см на карте приходится 1 км на местности. Если расстояние от вашего города до дачного поселка  составляет 10км (по прямой!), то на стотысячной карте это расстояние представляет собой отрезок длиной 10см.

На двухсоттысячной карте (М=1:200 000) в 1 см изображается фактическое расстояние, равное 2 км (200 000 см=2 км).

На трехсоттысячной карте с масштабом 1:300 000 под каждым сантиметром подразумевают фактическое расстояние в 3 км (300 000 см=3 км).

На пятитысячной карте 1 см соответствует 5 км на местности.

На миллионной карте 1 см соответствует 10 км на местности. На таких картах изображают области, края.

А на каких картах можно изобразить страны? Обычно карты стран, Республик имеют масштаб 1:8 000 000 или 1: 10 000 000.

Большая карта Мира, которую вы изучаете в школе, имеет масштаб 1: 25 000 000.

Чтобы напечатать эту карту в атласе нужно ее уменьшить. И тогда масштаб карты Мира в атласе может составить 1: 60 000 000 или 1:75 000 000, если атлас будет поменьше.

Задача 1. Пользуясь картой масштабом 1:12 250 000, найдите расстояние (по прямой) между Астаной и Таразом на местности.

Решение.

На карте 1 см соответствует 12 250 000 см или (делим число сантиметров на 100 000 — переносим запятую на 5 цифр влево) 122, 5 км.

Измерим линейкой расстояние между Астаной и Таразом на карте. Получилось 7,5 см. Нужно узнать, сколько километров соответствует отрезку на карте в 7,5 см. Итак:

1 см ----------122,5 км

7,5 см-------  х км.  Можно составить пропорцию, а можно рассуждать так: в 1 см — 122,5 км, тогда в 7,5 см — в 7,5 раз больше. Следовательно, 122,5·7,5=918,75. Округлим до целых: 918,75≈919.

Ответ: от Астаны до Тараза (по прямой) 919 км.

 Задача 2. Найти масштаб карты, если расстояние от Астаны до Атырау (по прямой) на местности составляет 1500 км.

Решение.

Измеряем линейкой расстояние от Астаны до Атырау. Получилось 7,5 см. По условию можно записать:

7,5 см ---------- 1500 км. Найти масштаб карты — означает узнать, сколько километров (а потом, обязательно, — сантиметров на местности) соответствуют отрезку в 1 см на карте. Запишем:

1 см ------------ х км. Можно составить пропорцию: 7,5:1=1500:х, из которой найти ее крайний член х. А можно рассуждать так:  1500 км изображены отрезком в 7,5 см, значит, отрезок в 1 см будет соответствовать расстоянию в 7,5 раз меньшему, и нужно число 1500 разделить на 7,5.

х=1500:7,5;

х=15000:75;

х=200. Мы нашли, сколько км на местности приходится на 1 см на карте. Выразим 200 км в сантиметрах (для этого нам просто нужно приписать к числу 200 справа 5 нулей).

200 км=20 000 000 см. Масштаб карты 1:20 000 000.

Ответ: М=1:20 000 000.

Смотрите видео: «Масштаб».

 

 

6.1.3. Прямо пропорциональные величины

I. Прямо пропорциональные величины.

Пусть величина y зависит от величины х. Если при увеличении х в несколько раз величина у увеличивается во столько же раз, то такие величины х и у называются прямо пропорциональными. 

Примеры.

1. Количество купленного товара и стоимость покупки (при фиксированной цене одной единицы товара — 1 штуки или 1 кг и т. д.) Во сколько раз больше товара купили, во столько раз больше и заплатили.

2. Пройденный путь и затраченное на него время (при постоянной скорости). Во сколько раз длиннее путь, во столько раз больше потратим времени на то, чтобы его пройти.

3. Объем какого-либо тела и его масса. (Если один арбуз в 2 раза больше другого, то и масса его будет в 2 раза больше)

II. Свойство прямой пропорциональности величин.

Если две величины прямо пропорциональны, то отношение двух произвольно взятых значений первой величины равно отношению двух соответствующих значений второй величины.

Задача 1.  Для малинового варенья взяли 12 кг малины и 8 кг сахара. Сколько сахара потребуется, если взяли 9 кг  малины?

Решение.

Рассуждаем так: пусть потребуется х кг сахара на 9 кг малины. Масса малины и масса сахара — прямо пропорциональные величины: во сколько раз меньше малины, во столько же раз нужно меньше сахара. Следовательно, отношение  взятой (по массе) малины (12:9) будет равно отношению взятого сахара (8:х). Получаем пропорцию:

12:9=8:х;

х=9·8:12;

х=6.   Ответ: на 9 кг малины нужно взять 6 кг сахара.

Решение задачи можно было оформить и так:

Пусть на 9 кг малины нужно взять х кг сахара.

(Стрелки на рисунке направлены в одну сторону, а вверх или вниз — не имеет значения. Смысл: во сколько раз число 12 больше числа 9, во столько же раз число 8 больше числа х, т. е. здесь прямая зависимость).

 

 

Ответ: на 9 кг малины надо взять 6 кг сахара.

Задача 2. Автомобиль за 3 часа проехал расстояние 264 км. За какое время он проедет 440 км, если будет ехать с той же скоростью?

Решение.

Пусть за х часов автомобиль пройдет расстояние 440 км.

Ответ: автомобиль пройдет 440 км за 5 часов.

Задача 3. Из трубы поступает вода в бассейн. За 2 часа она заполняет 1/5 бассейна. Какая часть бассейна заполняется водой за 5 часов?

Решение. 

Отвечаем на вопрос задачи: за 5 часов наполнится 1/х часть бассейна. (Весь бассейн принимается за одну целую).

6.1.2. Задачи на пропорцию

Задача 1. Толщина 300 листов бумаги для принтера составляет 3, 3 см. Какую толщину будет иметь пачка из 500 листов такой же бумаги?

Решение. Пусть х см — толщина пачки бумаги из 500 листов. Двумя способами найдем толщину одного листа бумаги:

3,3:300 или х:500.

Так как листы бумаги одинаковые, то эти два отношения равны между собой. Получаем пропорцию (напоминание: пропорция — это равенство двух отношений):

3,3:300=х:500. Неизвестный средний член пропорции равен произведению крайних членов пропорции, деленному на известный средний член. (Подробно о пропорции и нахождению ее крайнего, среднего членов читайте в статье: «6.1.1. Пропорция. Основное свойство пропорции.»)

х=(3,3·500):300;

х=5,5.  Ответ: пачка 500 листов бумаги имеет толщину 5,5 см.

Это классическое рассуждение и оформление решения задачи.  Такие задачи часто включают в тестовые задания для выпускников, которые обычно записывают решение в таком виде:

или решают устно, рассуждая так: если 300 листов имеют толщину 3,3 см, то 100 листов имеют толщину в 3 раза меньшую. Делим 3,3 на 3, получаем 1,1 см. Это толщина 100 листовой пачки бумаги. Следовательно, 500 листов будут иметь толщину в 5 раз большую, поэтому, 1,1 см умножаем на 5 и получаем ответ: 5,5 см.

Разумеется, это оправдано, так как время тестирования выпускников и абитуриентов ограничено. Однако, на этом занятии мы будем рассуждать и записывать решение так, как положено это делать в 6 классе.

Задача 2. Сколько воды содержится в 5 кг арбуза, если известно, что арбуз состоит на 98% из воды?

Решение.

Вся масса арбуза (5 кг) составляет 100%.  Вода составит х кг или 98%. Двумя способами можно найти, сколько кг приходится на 1% массы.

5:100 или х:98. Получаем пропорцию:

5:100 = х:98.

х=(5·98):100;

х=4,9  Ответ: в 5кг арбуза содержится 4,9 кг воды.

Задача 3. Масса 21 литра нефти составляет 16,8 кг. Какова масса 35 литров нефти?

Решение.

Пусть масса 35 литров нефти составляет х кг. Тогда двумя способами можно найти массу 1 литра нефти:

16,8:21 или х:35. Получаем пропорцию:

16,8:21=х:35.

Находим средний член пропорции. Для этого перемножаем крайние члены пропорции (16,8 и 35) и делим на известный средний член (21). Сократим дробь на 7.

Умножаем числитель и знаменатель дроби на 10, чтобы в числителе и знаменателе были только натуральные числа. Сокращаем дробь на 5 (5 и 10)  и на 3 (168 и 3).

Ответ: 35 литров нефти имеют массу 28 кг.

 Задача 4. После того, как было вспахано 82% всего поля, осталось вспахать еще 9 га. Какова площадь всего поля?

Решение. 

Пусть площадь всего поля х га, что составляет 100%. Осталось вспахать 9 га, что составляет 100% — 82% = 18% всего поля. Двумя способами выразим 1% площади поля. Это:

х:100 или 9:18. Составляем пропорцию:

х:100 = 9:18.

Находим неизвестный крайний член пропорции. Для этого перемножаем средние члены пропорции (100 и 9) и делим на известный крайний член (18). Сокращаем дробь.

Ответ: площадь всего поля 50 га.

Страница 4 из 14« Первая...23456...10...Последняя »
Архивы
Наверх