Блог - Part 5
 

математика-повторение

Закрепляем и систематизируем знания основ школьной математики.

5.5.5. Деление десятичной дроби на натуральное число

 I.  Чтобы разделить десятичную дробь на натуральное число, нужно делить дробь на это число, как делят натуральные числа и поставить в частном запятую тогда, когда закончится деление целой части.

Примеры. 

Выполнить деление: 1) 96,25:5;  2) 4,78:4;  3) 183,06:45.

Решение.

Пример 1) 96,25:5.

Делим «уголком» так, как делят натуральные числа. После того, как сносим цифру 2 (число десятых — первая цифра после запятой в записи делимого 96,25), в частном ставим запятую и продолжаем деление.

Ответ: 19,25.

 

 

Пример 2) 4,78:4.

Делим так, как делят натуральные числа. В частном поставим запятую сразу, как снесем 7 — первую цифру после запятой в делимом 4,78. Продолжаем деление дальше. При вычитании 38-36 получаем 2, но деление не окончено. Как поступаем? Мы знаем, что в конце десятичной дроби можно приписывать нули — от этого значение дроби не изменится. Приписываем нуль и делим 20 на 4. Получаем 5 — деление окончено.

Ответ: 1,195.

 

Пример 3) 183,06:45.

Делим как 18306 на 45. В частном поставим запятую как только снесем цифру 0 — первую цифру после запятой в делимом 183,06. Так же, как в примере 2) нам пришлось приписать нуль к числу 36 — разности чисел 306 и 270.

Ответ: 4,068.

Вывод: при делении десятичной дроби на натуральное число в частном ставим запятую сразу после того, как сносим цифру в разряде десятых делимого. Обратите внимание: все выделенные красным цветом цифры в этих трех примерах относятся к разряду десятых долей делимого.

Смотрите видео: «Как разделить десятичную дробь на натуральное число».

II. Чтобы разделить десятичную дробь на 10, 100, 1000 и т. д. нужно перенести запятую влево на 1, 2, 3 и т. д. цифр.

Примеры.

Выполнить деление: 1) 41,56:10;  2) 123,45:100;  3) 0,47:100;  4) 8,5:1000;  5) 631,2:10000.

Решение.

Перенос запятой влево зависит от того, сколько в делителе нулей после единицы. Так, при делении десятичной дроби на 10 мы будем переносить в делимом запятую влево на одну цифру; при делении на 100 — перенесем запятую влево на две цифры; при делении на 1000 перенесем  в данной десятичной дроби запятую на три цифры влево. 

В примерах 3) и 4) пришлось приписать нули перед десятичной дробью, чтобы удобнее было переносить запятую. Однако, приписывать нули можно мысленно, и вы будете это делать, когда хорошо научитесь применять правило II для деления десятичной дроби на 10, 100, 1000 и т. д.

Смотрите видео: «Как разделить десятичную дробь на 10, 100, 1000 и т.д.»

 

10.2.6. Решение тригонометрических неравенств. Часть 6

На предыдущих занятиях мы решали тригонометрические неравенства следующих видов:

На этом занятии мы будем решать неравенства вида tgt>a.

Будем применять следующий алгоритм решения (как на прошлом уроке):

1. Если аргумент — сложный (отличен от х), то заменяем его на t.

2. Строим в одной координатной плоскости tOy графики функций y=tgt  и y=a.

3. Находим промежуток значений t,  при которых тангенсоида располагается выше прямой у=а. Левая граница этого промежутка arctg a, а правая всегда (π/2)

4. Записываем двойное неравенство для аргумента t, учитывая наименьший период тангенса Т=π (будет между абсциссами arctg a и (π/2) ).

5. Делаем обратную замену (возвращаемся к первоначальному аргументу) и выражаем значение х из двойного неравенства, записываем ответ в виде числового промежутка.

Первое неравенство.

Решение.

Разделим обе части неравенства на 3. Сделаем замену данной переменной на t. Тогда получим более простое неравенство.

Определим промежуток значений переменной t, при которых неравенство будет верным. Это абсциссы тех точек графика функции y=tg t, которые лежат выше нашей прямой. Покажем штриховкой эти значения t. Запишем найденные значения аргумента t в виде двойного неравенства.

Второе неравенство.

Решение. 

Преобразуем левую часть неравенства по формуле tg (α+β) и получим более простое неравенство. Делаем замену переменной.

Определяем искомый промежуток значений переменной t. Затем выразим х и запишем ответ в виде промежутка. Учтем, что неравенство нестрогое, но что тангенса (π/2) не существует.

Третье неравенство.

Решение.

Применяем правило для формул приведения:

1) перед приведенной функцией ставят знак приводимой; 2) если в записи аргумента (π/2) взято нечетное число раз, то функцию меняют на кофункцию.

Наш аргумент находится в 3-ей четверти, а котангенс в 3-ей четверти имеет знак «плюс», поэтому, знак приведенной функции не поменяется. В записи данного аргумента (π/2) взято 3 раза (нечетное число), поэтому функцию котангенс поменяем на кофункцию — тангенс.

Теперь данное неравенство приняло вид: tgt≥1. Построим графики функций y=tgt и у=1. Определим промежуток значений аргумента t, при которых неравенство tgt≥1 будет верным. Ответ запишем в виде промежутка. Неравенство у нас нестрогое, но правый конец промежутка не входит в решение неравенства, так как тангенса (π/2) не существует.

Подробные решения этих неравенств смотрите в видео: «10.2.6. Решение тригонометрических неравенств. Часть 6

Дорогие друзья! Мы решили неравенства с тангенсом графическим способом, но, конечно, существует и более короткое решение — по формулам.

Если tgt<a, то (- π/2) + πn < t < arctg a + πn, где nєZ.

Если tgt>a, то  arctg a + πn < t < (π/2) + πn,  где nєZ.

Выучите эти формулы, и вы будете решать тригонометрические неравенства с тангенсом быстрее!

5.5.4. Умножение десятичных дробей

I. Чтобы умножить десятичную дробь на натуральное число, нужно умножить ее на это число, не обращая внимания на запятую, и в полученном произведении отделить запятой столько цифр справа, сколько их было после запятой в данной дроби.

Примеры. Выполнить умножение: 1) 1,25·7;   2) 0,345·8;   3) 2,391·14.

Решение.

Смотрите видео: « Как умножить десятичную дробь на натуральное число».

II. Чтобы умножить одну десятичную дробь на другую, нужно выполнить умножение , не обращая внимания на запятые, и в полученном результате отделить запятой справа столько цифр, сколько их было после запятых в обоих множителях вместе.

Примеры. Выполнить умножение: 1) 18, 2·0,09;   2) 3,2·0,065;    3) 0,54·12,3.

Решение. 

Смотрите видео: «Умножение десятичных дробей.»

III. Чтобы умножить десятичную дробь на 10, 100, 1000 и т. д. нужно перенести запятую вправо на 1, 2, 3 и т. д. цифр.

Примеры. Выполнить умножение: 1) 3,25·10; 2) 0,637·100; 3) 4,307·1000; 4) 2,04·1000; 5) 0,00031·10000.

Решение.

Смотрите видео: «Умножение десятичных дробей на 10, 100, 1000 и т. д.»

IV. Чтобы умножить десятичную дробь на 0,1; 0,01; 0,001 и т. д. нужно перенести запятую влево на 1, 2, 3 и т. д. цифр. 

Примеры. Выполнить умножение: 1) 28,3·0,1; 2) 324,7·0,01; 3) 6,85·0,01; 4) 6179,5·0,001;  5) 92,1·0,0001.

Решение.

Смотрите видео: «Умножение десятичных дробей на 0,1; 0,001; 0,0001 и т. д.»

 

6.1.1. Пропорция. Основное свойство пропорции

 Равенство двух отношений называют пропорцией.

Тема: «Отношение» рассмотрена на предыдущем занятии («6.1. Отношение»).

a:b=c:d. Это пропорция. Читают: а так относится к b, как c относится к d. Числа a и d называют крайними членами пропорции, а числа b и cсредними членами пропорции.

Пример пропорции:  12 : 3 = 16 : 4. Это равенство двух отношений: 12:3=4 и 16:4=4. Читают: двенадцать так относится к трем, как шестнадцать относится к четырем. Здесь 12 и 4 -крайние члены пропорции, а 3 и 16 - средние члены пропорции.

 Основное свойство пропорции.

 Произведение крайних членов пропорции равно произведению ее средних членов.

Для пропорции a:b=c:d или a/b=c/d основное свойство записывается так: a·d=b·c.

Для нашей пропорции 12 : 3 = 16 : 4 основное свойство запишется так: 12·4=3·16. Получается верное равенство: 48=48.  

Чтобы найти неизвестный крайний член пропорции, нужно произведение средних членов пропорции разделить на известный крайний член.

Примеры. Найти неизвестный крайний член пропорции.

1) х : 20 = 2 : 5. У нас х и 5 — крайние члены пропорции, а 20 и 2 — средние.

Решение.

х = (20·2):5  — нужно перемножить средние члены (20 и 2) и результат разделить на известный крайний член (число 5);

х = 40 : 5  —  произведение средних членов (40) разделим на известный крайний член (5);

х = 8. Получили искомый крайний член пропорции.

Удобнее записывать нахождение неизвестного члена пропорции с помощью обыкновенной дроби. Вот как тогда запишется рассмотренный нами пример:

Искомый крайний член пропорции (х) будет равен произведению средних членов (20 и 2), деленному на известный крайний член (5).

Сокращаем дробь на 5 (делим на 5 и числитель и знаменатель дроби). Находим значение х.

Если забыли, как сокращать обыкновенные дроби, то повторите тему: «5.4.2. Примеры сокращения обыкновенных дробей»

Еще такие примеры на нахождение неизвестного крайнего члена пропорции.

Чтобы найти неизвестный средний член пропорции, нужно произведение крайних членов пропорции разделить на известный средний член.

Примеры. Найти неизвестный средний член пропорции.

5) 9 : х = 3 : 14. Число 3 — известный средний член данной пропорции, числа 9 и 14 — крайние члены пропорции.

Решение. 

х = (9·14):3 —  перемножим крайние члены пропорции и результат разделим на известный средний член пропорции;

х= 136:3;

х=42.

Решение этого примера можно записать иначе:

Искомый средний член пропорции (х) будет равен произведению крайних членов (9 и 14), деленному на известный средний член (3).

Сокращаем дробь на 3 (делим на 3 и числитель и знаменатель дроби). Находим значение х.

Если забыли, как сокращать обыкновенные дроби, то повторите тему: «5.4.2. Примеры сокращения обыкновенных дробей»

Еще такие примеры на нахождение неизвестного среднего члена пропорции.

6.1. Отношение

I. Частное двух чисел называют отношением этих чисел. 

так с помощью букв записывают отношение чисел a и b, причем, а – предыдущий член, b – последующий член. (Напоминание: дробная черта означает знак деления).

Примеры. 

1) Найти отношения: а) 9 : 5; б) 0,21 : 0,3; в) 51 : 7.

Решение. Выполняем деление.

2) Найти неизвестные члены отношений: а) х : 6 = 24; б) 35 : х = 0,07.

Решение.

а) х : 6 = 24.  Делимое равно х, делитель равен 6, частное равно 24. Чтобы найти неизвестное делимое, нужно частное умножить на делитель. 

х = 24 · 6;

х = 144.

б) 35 : х = 0,07.  Делимое равно 35, делитель равен х, частное равно 0,07. Чтобы найти неизвестный делитель, нужно делимое разделить на частное.

х = 35 : 0,07;

х = 3500 : 7;

х= 500.

 II. Если члены данного отношения переставить местами, то получившееся отношение называют обратным для данного отношения. 

 III. Отношение не изменится, если оба члена отношения умножить или разделить на одно и то же число, отличное от нуля.

В самом деле, отношение означает деление.

Члены отношения — это числитель и знаменатель обыкновенной дроби.

А мы знаем основное свойство обыкновенной дроби: значение дроби не изменится, если ее числитель и знаменатель умножить или разделить на одно и то же натуральное число. 

Примеры.

3) Сократите отношение: а) 80 : 5; б) 42 : 45.

а) 80 : 5. Разделим оба члена этого отношения на 5. Тогда вместо числа 80 получим число 16 (80:5=16), а вместо числа 5 получим число 1 (5:5=1). Запишем: 80 : 5 = 16 : 1.  Читают: восемьдесят так относится к пяти, как шестнадцать относится к единице.

б) 42 : 45. Каждый член этого отношения разделим на 3,

тогда получим равенство: 42 : 45 = 14 : 15. Читают: сорок два так относится к сорока пяти, как четырнадцать относится к пятнадцати.

10.2.5. Решение тригонометрических неравенств. Часть 5

На предыдущих занятиях мы решали графическим способом тригонометрические неравенства вида:

На этом занятии мы решим три неравенства вида: tgt<a.

Составим алгоритм решения.

1. Если аргумент — сложный (отличен от х), то заменяем его на t.

2. Строим в одной координатной плоскости tOy графики функций y=tgt  и y=a.

3. Находим промежуток значений t,  при которых тангенсоида располагается ниже прямой у=а. Левая граница этого промежутка всегда (-π/2), а правая arctg a

4. Записываем двойное неравенство для аргумента t, учитывая период тангенса Т=π (будет между абсциссами(-π/2) и  arctg a).

5. Делаем обратную замену (возвращаемся к первоначальному аргументу) и выражаем значение х из двойного неравенства, записываем ответ в виде числового промежутка.

Решение тригонометрических неравенств графическим способом надежно страхует нас от ошибок только в том случае, если мы грамотно построим графики.

Первое неравенство.

Построим графики функций y=tgx и у=1. Подробно рассмотрим построение тангенсоиды. Приготовим координатную плоскость хОу следующим образом:

единичный отрезок равен двум клеткам; так как значение π≈3,14, то π на горизонтальной оси Ох будет изображаться шестью клетками; половина π (это π/2) — тремя клетками. Одна клетка — это π/6; полторы клетки — это π/4; две клетки будут соответствовать аргументу π/3.

Мы знаем, что тангенс 90° не существует, а так как функция тангенса периодическая с наименьшим периодом, равным π, то не существует тангенс (90°+πn). Учтем это при построении графика и проведем две асимптоты: х= - π/2 и х=π/2.

Итак, в промежутке от - π/2 до π/2 тангенс будет «пробегать» все свои значения. Пользуясь значениями тангенса некоторых углов и свойством нечетности функции тангенса (график будет симметричен относительно начала координат), строим точки в приготовленной координатной плоскости, через которые и проведем тангенсоиду.

 

Построим прямую у=1.

Проведем ее параллельно оси Ох, выше на один единичный отрезок (выше на 2 клетки).

Прямая у=1 пересекает тангенсоиду в точке с координатами (π/4; 1).

 

Определяем промежуток значений х, при которых неравенство будет верным, т.е. внутри которого тангенсоида располагается ниже прямой у=1. Учтем, что неравенство нестрогое, значит, правый конец промежутка (π/4) входит во множество решений неравенства. Записываем решение в виде двойного неравенства. Ответ запишем в виде промежутка.

Второе неравенство.

Отметим промежуток значений t, при которых точки тангенсоиды находятся ниже точек прямой у=1. Запишем этот промежуток в виде двойного неравенства. Затем перезапишем его для первоначального аргумента и выразим х. Ответ запишем в виде промежутка.

Третье неравенство.

Отмечаем промежуток значений t, при которых неравенство верно. У нас нестрогое неравенство, значит, правый конец промежутка значений t также является решением неравенства. Возвращаемся к первоначальному аргументу и выражаем х. Ответ записываем в виде промежутка значений переменной х.

Смотреть видео: «10.2.5. Решение тригонометрических неравенств. Часть 5.»

Неравенства вида tgt<a можно решать и без графиков, по соответствующей формуле.

Если tgt<a, то — (π/2) + πn < t < arctg a + πn, где nєZ.

10.2.4. Решение тригонометрических неравенств. Часть 4

На предыдущих трех занятиях по решению тригонометрических неравенств графическим способом мы рассмотрели неравенства вида:

Рассмотрим тригонометрические неравенства вида: cost>a.

Используем алгоритм решения, как в предыдущем уроке 10.2.3. Решение тригонометрических неравенств. Часть 3.

1. Если аргумент — сложный (отличен от х), то заменяем его на t.

2. Строим в одной координатной плоскости tOy графики функций y=cost  и y=a.

3. Находим такие две соседние точки пересечения графиков,  между которыми синусоида располагается выше прямой у=а. Находим абсциссы этих точек.

4. Записываем двойное неравенство для аргумента t, учитывая период косинуса (t будет между найденными абсциссами).

5. Делаем обратную замену (возвращаемся к первоначальному аргументу) и выражаем значение х из двойного неравенства, записываем ответ в виде числового промежутка.

Решение тригонометрических неравенств с помощью графиков надежно страхует нас от ошибок только в том случае, если мы грамотно построим синусоиду. (График функции y=cosx также называют синусоидой!) Построение синусоиды y=cosx  рассматривается подробно в предыдущем уроке 10.2.3. Решение тригонометрических неравенств. Часть 3.

Пример 1.

Далее, по алгоритму, определяем те значения аргумента t, при которых синусоида располагается выше прямой. Выпишем эти значения в виде двойного неравенства, учитывая периодичность функции косинуса, а затем вернемся к первоначальному аргументу х.

Пример 2.

Выделяем промежуток значений t, при которых синусоида находится выше прямой.

Записываем в виде двойного неравенства значения t, удовлетворяющих условию. Не забываем, что наименьший период функции y=cost равен . Возвращаемся к переменной х, постепенно упрощая все части двойного неравенства.

Ответ записываем в виде закрытого числового промежутка, так как неравенство было нестрогое.

Пример 3.

Нас будет интересовать промежуток значений t, при которых точки синусоиды будут лежать выше прямой.

Значения t запишем в виде двойного неравенства, перезапишем эти же значения для и выразим х. Ответ запишем в виде числового промежутка.

Смотрите видео: «10.2.4. Решение тригонометрических неравенств. Часть 4.»

И снова формула, которой вам следует воспользоваться на экзамене ЕНТ или ЕГЭ при решении тригонометрического неравенства вида cost>a.

Если  cost>a, (-1≤а≤1), то - arccos a + 2πn < t < arccos a + 2πn, nєZ.

Применяйте  формулы для решения тригонометрических неравенств, и вы  сэкономите время на экзаменационном тестировании.

10.2.3. Решение тригонометрических неравенств. Часть 3

На предыдущих двух занятиях по решению тригонометрических неравенств графическим способом мы рассмотрели решения неравенств вида:

Продолжаем решать тригонометрические неравенства графическим способом. Рассмотрим неравенства вида cost<a:

Составим алгоритм решения.

1. Если аргумент — сложный (отличен от х), то заменяем его на t.

2. Строим в одной координатной плоскости tOy графики функций y=cost  и y=a.

3. Находим такие две соседние точки пересечения графиков,  между которыми синусоида располагается ниже прямой у=а. Находим абсциссы этих точек.

4. Записываем двойное неравенство для аргумента t, учитывая период косинуса Т=2π (t будет между найденными абсциссами).

5. Делаем обратную замену (возвращаемся к первоначальному аргументу) и выражаем значение х из двойного неравенства, записываем ответ в виде числового промежутка.

Решение тригонометрических неравенств с помощью графиков надежно страхует нас от ошибок только в том случае, если мы грамотно построим синусоиду. (График функции y=cosx также называют синусоидой!)

Первое неравенство.

Преобразуем левую часть неравенства по формуле косинуса двойного аргумента:

Координатную плоскость готовим так же, как готовили для построения графика функции y=sinx. (10.2.1. Решение тригонометрических неравенств. Часть 1), т.е. единичный отрезок берем равным двум клеткам, тогда значение π изображаем равным шести клеткам и т.д. Вот так должна выглядеть координатная плоскость для построения синусоид:

Воспользуемся таблицей значений косинусов некоторых углов:

 а также свойствами: графиков четных функций, непрерывностью и периодичностью функции косинуса. Отмечаем точки:

Проводим через эти точки кривую — график функции y=cosx.

Определяем промежуток значений х, при которых точки синусоиды лежат ниже точек прямой.

Учтем периодичность функции косинуса и запишем в виде двойного неравенства решение данного неравенства:

Второе неравенство.

Находим абсциссы точек пересечения графиков, между которыми график косинуса лежит ниже прямой.

Концы этого промежутка тоже являются решениями неравенства, так как неравенство нестрогое.

Запишем решение в виде двойного неравенства  для переменной t.

Подставим вместо t первоначальное значение аргумента.

Выразим х.

Ответ запишем в виде промежутка.

Третье неравенство.

Смотрите видео: «10.2.3. Решение тригонометрических неравенств. Часть 3.»

А теперь формула, которой вам следует воспользоваться на экзамене ЕНТ или ЕГЭ при решении тригонометрического неравенства вида cost<a.

Если  cost<a, (-1≤а≤1), то arccos a + 2πn < t < 2π — arccos a + 2πn, nєZ.

Примените эту формулу для решения рассмотренных в этой статье неравенств, и вы получите ответ гораздо быстрее и безо всяких графиков!    

10.2.2. Решение тригонометрических неравенств. Часть 2

На прошлом занятии «10.2.1. Решение тригонометрических неравенств. Часть 1» мы решили три неравенства вида sint<a. На этом уроке мы рассмотрим три неравенства вида sint>a, где -1≤а≤1.

Составим алгоритм решения.

1. Если аргумент — сложный (отличен от х), то заменяем его на t.

2. Строим в одной координатной плоскости tOy графики функций y=sint  и y=a.

3. Находим такие две соседние точки пересечения графиков (поближе к оси Оу), между которыми синусоида располагается выше прямой у=а. Находим абсциссы этих точек.

4. Записываем двойное неравенство для аргумента t, учитывая период синуса (t будет между найденными абсциссами).

5. Делаем обратную замену (возвращаемся к первоначальному аргументу) и выражаем значение х из двойного неравенства, записываем ответ в виде числового промежутка.

Решаем первое неравенство:

Построение графика синуса мы рассмотрели подробно в занятии  «10.2.1. Решение тригонометрических неравенств. Часть 1».

Учитывая периодичность функции синуса, запишем двойное неравенство для значений аргумента t, удовлетворяющий последнему неравенству. Вернемся к первоначальной переменной. Преобразуем полученное двойное неравенство и выразим переменную х. Ответ запишем в виде промежутка.

Решаем второе неравенство:

При решении второго неравенства нам пришлось преобразовать левую часть данного неравенства по формуле синуса двойного аргумента, чтобы получить неравенство вида: sint≥a. Далее  мы следовали алгоритму.

Решаем третье неравенство:

Смотрите видео: «10.2.2. Решение тригонометрических неравенств. Часть 2.»

Дорогие выпускники и абитуриенты! Имейте ввиду, что такие способы решения тригонометрических неравенств, как приведенный выше графический способ и, наверняка, вам известный, способ решения с помощью единичной тригонометрической окружности (тригонометрического круга)  применимы лишь на первых этапах изучения раздела тригонометрии «Решение тригонометрических уравнений и неравенств». Думаю, вы припомните, что и простейшие тригонометрические уравнения вы вначале решали с помощью графиков или круга. Однако, сейчас вам не придет в голову решать таким образом тригонометрические уравнения. А как вы их решаете? Правильно, по формулам. Вот и тригонометрические неравенства следует решать по формулам, тем более, на тестировании, когда дорога каждая минута. Итак, решите три неравенства этого урока по соответствующей формуле.

Если sint>a, где  -1≤a≤1, то  arcsin a + 2πn < t < π — arcsin a + 2πn, nєZ.

Учите формулы! 

 

10.2.1. Решение тригонометрических неравенств. Часть 1

На этом и последующих занятиях мы будем решать графическим способом тригонометрические неравенства одного какого-то вида. Сегодня мы решим три тригонометрических неравенства вида sint<a. Вот они:

Составим алгоритм решения.

1. Если аргумент — сложный (отличен от х), то заменяем его на t.

2. Строим в одной координатной плоскости tOy графики функций y=sint  и y=a.

3. Находим такие две соседние точки пересечения графиков (поближе к оси Оу), между которыми синусоида располагается ниже прямой у=а. Находим абсциссы этих точек.

4. Записываем двойное неравенство для аргумента t, учитывая период синуса (t будет между найденными абсциссами).

5. Делаем обратную замену (возвращаемся к первоначальному аргументу) и выражаем значение х из двойного неравенства, записываем ответ в виде числового промежутка.

Решение тригонометрических неравенств с помощью графиков надежно страхует нас от ошибок только в том случае, если мы грамотно построим синусоиду.

Для построения графика функции y=sinx выберем единичный отрезок, равный двум клеткам. Тогда по горизонтальной оси Ох значение π (≈3,14) составит шесть клеток. Рассчитываем остальные значения аргументов (в клетках).

Вот как будет выглядеть координатная плоскость.

Эти точки мы взяли из таблицы значений синуса.  Также используем свойство нечетности функции y=sinx (sin (-x)=-sinx), периодичность синуса (наименьший период Т=2π) и известное равенство: sin (π-x)=sinx. Проводим синусоиду

. Проводим прямую.

Теперь нам предстоит определить такие две точки пересечения синусоиды и прямой, между которыми синусоида располагается ниже, чем прямая. Крайняя точка справа определена, абсцисса ближайшей искомой отстоит от начала отсчета влево на 8 клеток. Построим ее и определим.

Между этими (выделенными) значениями аргумента и находится та часть синусоиды, которая лежит ниже данной прямой, а значит, промежуток между этими выделенными точками удовлетворяет данному неравенству. Учтем период синуса, запишем результат в виде двойного неравенства, а ответ в виде числового промежутка.

Решим второе неравенство.

Синусоиду строим так же, а прямая будет параллельна оси Оt и отстоять от нее на 1 клетку вниз.

Определяем промежуток, внутри которого точки синусоиды лежат ниже прямой.

Записываем промежуток значений введенной переменной t. Возвращаемся к первоначальному значению аргумента (). Все части двойного неравенства делим на 2 и определяем промежуток значений х. Записываем ответ в виде числового промежутка.

Аналогично решаем и третье неравенство.

В выделенном промежутке синусоида располагается ниже прямой, поэтому, учитывая периодичность функции синуса, запишем в виде двойного неравенства значения t. Затем вместо t подставим первоначальный аргумент синуса и будем выражать х из полученного двойного неравенства.

Ответ запишем в виде числового промежутка.

 

Смотрите видео: 10.2.1. Решение тригонометрических неравенств вида: sinx<a  графическим способом.

И, напоследок: знаете ли вы, что математика — это определения, правила и ФОРМУЛЫ?!

Конечно, знаете! И самые любознательные, изучив эту статью и просмотрев видео, воскликнули: «Как долго и сложно! А нет ли формулы, позволяющей решать такие неравенства безо всяких графиков и окружностей?» Да, разумеется, есть!

ДЛЯ РЕШЕНИЯ НЕРАВЕНСТВ ВИДА: sint<a (-1≤а≤1) справедлива формула:

— π — arcsin a + 2πn < t < arcsin a + 2πn,  nєZ.

Примените ее к рассмотренным примерам и вы получите ответ гораздо быстрее!

Вывод: УЧИТЕ ФОРМУЛЫ, ДРУЗЬЯ!

Страница 5 из 14« Первая...34567...10...Последняя »
Архивы
Наверх