11 класс. Алгебра - Part 2
 
математика-повторение Закрепляем и систематизируем знания основ школьной математики.
Рубрика "11 класс. Алгебра"

11.1.3. Интегрирование путем подведения под знак дифференциала

На прошлом занятии (11.1.2), рассматривая примеры на  нахождение неопределенных интегралов, мы познакомились со способом подведения под знак дифференциала (мы называли его вторым способом). Фактически мы вводили новую переменную, не называя ее, а только подразумевая.

На этом занятии мы закрепим навык замены переменной в неопределенном интеграле и знания  свойств и таблицы интегралов. Нам опять понадобится наш лист Интегралы

Примеры. Найти неопределенные интегралы.

  1. ∫(6х+5)3dx. Как будем решать? Смотрим в лист Интегралы и рассуждаем примерно так: подынтегральная функция представляет собой степень, а у нас есть формула для интеграла степени (формула 1)), но в ней основание степени u и переменная интегрирования тоже u.

А у нас переменная интегрирования х, а основание степени (6х+5). Сделаем замену переменной интегрирования: вместо dx запишем d (6х+5). Что изменилось? Так как, то, что стоит после знака дифференциала d, по умолчанию, дифференцируется,

то d (6x+5)=6dx, т.е. при замене переменной х на переменную (6х+5) подынтегральная функция возросла в 6 раз, поэтому перед знаком интеграла ставим множитель 1/6. Записать эти рассуждения можно так:

Итак, мы решили этот пример введением новой переменной (переменную х заменили на переменную 6х+5). А куда записали новую переменную (6х+5)? Под знак дифференциала. Поэтому, данный метод введения новой переменной часто называют методом (или способом) подведения (новой переменной) под знак дифференциала.

Во втором примере мы вначале получили степень с отрицательным показателем, а  затем подвели под знак дифференциала (7х-2) и использовали формулу интеграла степени 1) (Интегралы).

Разберем решение примера 3.

Перед интегралом стоит коэффициент 1/5. Почему? Так как d (5x-2)=5dx, то, подведя под знак дифференциала функцию u=5x-2, мы увеличили подынтегральное выражение в 5 раз, поэтому, чтобы значение данного выражения не изменилось — надо было разделить на 5, т.е. умножить на 1/5. Далее, была использована формула 2) (Интегралы).

11.1.2. Неопределенный интеграл. Примеры

Прежде, чем решать примеры на нахождение неопределенных интегралов, вспомним основные свойства  и основные формулы неопределенных интегралов и запишем все это на отдельном листе "Интегралы".

Интегралы.

Основные свойства.

I. (∫f (x) dx)'=f (x).

II. d∫f (x) dx=f (x) dx.

III. ∫dF (x)=F (x)+C  или   ∫F'(x) dx=F (x)+C.

IV. ∫kf (x) dx=k·∫f (x) dx, где k - постоянная величина, не равная нулю.

V. ∫(f (x)±g (x)) dx=∫f (x) dx±∫g (x) dx.

VI. Если F (x) есть первообразная для f (x), а k и b - постоянные величины,

причем, k≠0, то (1/k)·F (kx+b) есть первообразная для f (kx+b).

Справедливо равенство:

Даже простейшие примеры на нахождение неопределенных интегралов предполагают хорошее знание таблицы интегралов. С этого и начнем, причем, перепишем все формулы таблицы интегралов для функции u, которая зависит от х. Итак, мы будем считать, что u - не простая переменная, а функция от х, т.е.  u=φ(x), тогда нижеприведенная таблица интегралов окажется справедливой в любом случае: и если  переменная интегрирования является независимой переменной, и если переменная интегрирования есть функция от независимой переменной.

Таблица интегралов.

 3) ∫du=u+C.

 6) ∫cosudu=sinu+C.

 7) ∫sinudu=-cosu+C.

Примеры. 

Найти следующие интегралы и сделать проверку.

1) ∫(2x – 3) dx. Используем свойства V и IV, формулы 1). и 3).

(Наш лист Интегралы)

∫(2x – 3) dx = 2∫xdx - 3∫dx = 2·x²/2  – 3x + C = х2 – 3х + С.

Проверка.   F'(x) = (х2 – 3х + С)' = 2x – 3 = f (x).

2). ∫(2x – 3)2dx.  Преобразуем подынтегральную функцию по формуле ФСУ (формулы сокращенного умножения): (a – b)2 = a2 – 2ab + b2, а затем используем те же свойства и формулы, что и в примере 1).

∫(2x – 3)2dx =∫( 4x2 – 12x + 9) dx = 4∫x2dx — 12∫xdx + 9∫dx =

= 4·x³/3 — 12· x²/2 + 9x + C = ( 4/3) x3 – 6x2 + 9x + C.

Проверка.   F'(x) = ((4/3) x3 – 6x2 + 9x + C)' =(4/3)  · 3x2 — 6·2x + 9 = 4x2 – 12x + 9 = (2x – 3)2 = f (x).

Решим пример 2) вторым способом - подведения под знак дифференциала.

Итак, требуется найти  ∫(2x – 3)2dx.

Будем использовать формулу 1). Вместо u у нас (2х – 3) и, по формуле 1), переменная интегрирования должна быть такой же, как и основание степени, т. е (2х – 3). Хорошо,  вместо dx запишем d(2x – 3). И что изменилось? d (2x – 3) = 2dx, т.е. подынтегральное выражение стало больше в 2 раза. Разделим его на 2. Для этого перед значком интеграла поставим множитель ½.

Значит,∫(2x – 3)2dx = (½)∫( 2x – 3)2 d (2x – 3).     Мысленно представляйте себе u2 вместо

(2х – 3)2  и du вместо d(2x – 3). Увидели ∫u2du ?  И что получится? Верно:  u³/3+ C.

«Долго сказка сказывается…», а решаются такие примеры быстро:

∫(2x – 3)2dx =  (½)∫(2x – 3)2 d (2x – 3) =(½) ·(2x-3)³/3  + С =(1/6) · (2х – 3)3 + С.

Проверка.   (F (x)+С)′ = ( 1/6· (2х – 3)3 + С)' =  (1/6)· 3 (2x – 3)2 · 2 = (2x – 3)2 = f (x).

Сравните эти два способа решения примера 2. Что, не впечатлил второй способ? Тогда пример 3).

3) ∫(2x – 3)7dx.   Желаете возводить (2х – 3) в седьмую степень? А-а, то-то же!

Решаем способом подведения под знак дифференциала, т.е. вторым способом так же, как предыдущий пример.

∫(2x – 3)7dx =  (½)∫(2x – 3)7d (2x – 3) =  (½)· (2x – 3)8 /8 + C =(1/16) (2x – 3)8 + C.

Проверка. F'(x) = ((1/16)(2x – 3)8 + C)' =(1/16) ·8 (2x – 3)7·2 = (2x – 3)7 = f (x).

11.1.1. Основные формулы и свойства неопределенного интеграла

Все простейшие формулы интегралов будут иметь вид:

∫f (x) dx=F (x)+C, причем, должно выполняться равенство:

(F (x)+C)'=f (x).

Формулы интегрирования можно получить обращением соответствующих формул дифференцирования.

Действительно,

Показатель степени n может быть  и дробным. Часто приходится находить неопределенный интеграл от функции у=√х. Вычислим интеграл от функции f (x)=√x, используя формулу 1).

Запишем этот пример в виде формулы 2).

Так как (х+С)'=1, то ∫dx=x+C.

3) ∫dx=x+C.

Заменяя 1/х² на х-2, вычислим интеграл от 1/х².

А можно было получить этот ответ обращением известной формулы дифференцирования:

Запишем наши рассуждения в виде формулы 4).

Умножив обе части полученного равенства на 2, получим формулу 5).

Найдем интегралы от основных тригонометрических функций, зная их производные: (sinx)'=cosx; (cosx)'=-sinx; (tgx)'=1/cos²x; (ctgx)'=-1/sin²x. Получаем формулы интегрирования 6) — 9).

6) ∫cosxdx=sinx+C;

7) ∫sinxdx=-cosx+C;

После изучения показательной и логарифмической функций, добавим еще несколько формул.

Основные свойства неопределенного интеграла.

I. Производная неопределенного интеграла равна подынтегральной функции.

(∫f (x) dx)'=f (x).

II. Дифференциал неопределенного интеграла равен подынтегральному выражению.

d∫f (x) dx=f (x) dx.

III. Неопределенный интеграл от дифференциала (производной) некоторой функции равен сумме этой функции и произвольной постоянной С.

∫dF (x)=F (x)+C  или   ∫F'(x) dx=F (x)+C.

Обратите внимание: в I, II и III свойствах знаки дифференциала и интеграла (интеграла и дифференциала) «съедают» друг друга!

IV. Постоянный множитель подынтегрального выражения можно вынести за знак интеграла.

∫kf (x) dx=k·∫f (x) dx, где k - постоянная величина, не равная нулю.

V.  Интеграл от алгебраической суммы функций равен алгебраической сумме интегралов от этих функций.

∫(f (x)±g (x)) dx=∫f (x) dx±∫g (x) dx.

VI. Если F (x) есть первообразная для f (x), а k и b — постоянные величины, причем, k≠0, то (1/k)·F (kx+b) есть первообразная для f (kx+b). Действительно, по правилу вычисления производной сложной функции имеем:

Можно записать:

11.1. Первообразная. Неопределенный интеграл.

Для каждого математического действия существует обратное ему действие. Для действия дифференцирования (нахождения производных функций) тоже существует обратное действие — интегрирование. Посредством интегрирования находят (восстанавливают) функцию по заданной ее производной или дифференциалу. Найденную функцию называют первообразной.

Определение. Дифференцируемая функция F (x) называется первообразной для функции f (x) на заданном промежутке, если для всех х из этого промежутка справедливо равенство: F′(x)=f (x).

Примеры. Найти первообразные для функций: 1) f (x)=2x; 2) f (x)=3cos3x.

1) Так как (х²)′=2х, то, по определению, функция F (x)=x² будет являться первообразной для функции f (x)=2x.

2) (sin3x)′=3cos3x.  Если обозначить f (x)=3cos3x и F (x)=sin3x, то, по определению первообразной, имеем: F′(x)=f (x), и, значит, F (x)=sin3x является первообразной для f (x)=3cos3x.

Заметим, что и  (sin3x+5)′=3cos3x, и  (sin3x-8,2)′=3cos3x, ... в общем виде можно записать:  (sin3x)′=3cos3x, где С — некоторая постоянная величина. Эти примеры говорят о неоднозначности действия интегрирования, в отличие от действия дифференцирования, когда у любой дифференцируемой функции существует единственная производная.

Определение. Если функция F (x) является первообразной для функции f (x) на некотором промежутке, то множество всех первообразных этой функции имеет вид:

F (x)+C, где С — любое действительное число.

Совокупность всех первообразных F (x)+C функции f (x) на рассматриваемом промежутке называется неопределенным интегралом и обозначается символом (знак интеграла). Записывают: ∫f (x) dx=F (x)+C.

Выражение ∫f (x) dx читают: «интеграл эф от икс по дэ икс».

f (x) dx — подынтегральное выражение,

f (x) — подынтегральная функция,

х — переменная интегрирования.

F (x) — первообразная для функции f (x),

С — некоторая постоянная величина.

Теперь рассмотренные примеры  можно записать так:

1) 2хdx=x²+C.                       2) ∫3cos3xdx=sin3x+C.

Что же означает знак d?

d —  знак дифференциала —  имеет двойное назначение: во-первых, этот знак отделяет подынтегральную функцию от переменной интегрирования; во-вторых, все, что стоит после этого знака диференцируется по умолчанию и умножается на подынтегральную функцию.

Примеры. Найти интегралы: 3) 2pxdx;  4) 2pxdp.

Решение.

3) После значка дифференциала d стоит х. Значит, переменная интегрирования х, а р следует считать некоторой постоянной величиной.

2хрdx=рх²+С. Сравните с примером 1). 

Сделаем проверку. F′(x)=(px²+C)′=p·(x²)′+C′=p·2x=2px=f (x).

4) После значка дифференциала d стоит р. Значит, переменная интегрирования р, а множитель х следует считать некоторой постоянной величиной.

2хрdр=р²х+С. Сравните  с примерами 1) и 3).

Сделаем проверку. F′(p)=(p²x+C)′=x·(p²)′+C′=x·2p=2px=f (p).

11.3.6. Решение систем показательных уравнений

Что является обязательным при решении системы показательных уравнений? Конечно, преобразование данной системы в систему простейших уравнений. 

Примеры.

Решить системы уравнений: 

 

Выразим у через х из (2) -го уравнения системы и подставим это значение в (1) -ое уравнение системы.

 

Решаем (2) -ое уравнение полученной системы:

2х+2x+2=10, применяем формулу: ax+y=axay.

2x+2x∙22=10, вынесем общий множитель 2х за скобки:

2х(1+22)=10 или 2х∙5=10, отсюда 2х=2.

2х=21, отсюда х=1. Возвращаемся к системе уравнений.

Ответ: (1; 2).

 Решение.

Представляем левую и правую части (1) -го уравнения в виде степеней с основанием 2, а правую часть (2) -го уравнения как нулевую степень числа 5.

Если равны две степени с одинаковыми основаниями, то равны и показатели этих степеней — приравниваем показатели степеней с основаниями 2 и показатели степеней с основаниями 5.

Получившуюся систему линейных уравнений с двумя переменными решаем методом сложения.

Находим х=2 и это значение подставляем вместо х во второе уравнение системы.

 

 

Находим у.

 

Ответ: (2; 1,5).

Решение.

Если в предыдущих двух примерах мы переходили к более простой системе приравнивая показатели двух степеней с одинаковыми основаниями, то в 3-ем примере эта операция невыполнима. Такие системы удобно решать вводом новых переменных. Мы введем переменные u и v, а затем выразим переменную u через v и получим уравнение относительно переменной v.

Решаем (2) -ое уравнение системы.

v (v+63)=64;

v2+63v-64=0. Подберем корни по теореме Виета, зная, что: v1+v2=-63; v1∙v2=-64.

Получаем: v1=-64, v2=1. Возвращаемся к системе, находим u.

 

Так как значения показательной функции всегда положительны, то уравнения 4x=-1 и 4y=-64 решений не имеют.

Представляем 64 и 1 в виде степеней с основанием 4.

Приравниваем показатели степеней и находим х и у.

 

Ответ: (3; 0).

Ответ: (2; 1).

 

11.3.5. Решение показательных неравенств, приводящихся к квадратным неравенствам

При решении показательных неравенств, приводящихся к квадратным неравенствам, поступают так же, как в примерах решения показательных уравнений, приводящихся к квадратным уравнениям, т. е. делают замену переменных, получают квадратное неравенство, которое решают, а затем возвращаются к прежней переменной.

Примеры.

Решить неравенство:

1) (0,5)2x+2<3∙(0,5)x.

Сделаем замену: пусть (0,5)х. Получаем неравенство:

у2+2<3y или y2-3y+2<0.

Разложим квадратный трехчлен y2-3y+2 на линейные множители по формуле:

ax2+bx+c=a (x-x1)(x-x2), где х1 и х2 – корни квадратного уравнения ax2+bx+c=0.

Находим корни приведенного квадратного уравнения y2-3y+2=0. Дискриминант D=b2-4ac=32-4∙1∙2=9-8=1=12. Так как дискриминант является полным квадратом, то применим теорему Виета: сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

у12=3, у1∙у2=2. Отсюда: у1=1, у2=2. Значит, y2-3y+2=(у-1)(у-2).

Решаем неравенство: (у-1)(у-2)<0 методом интервалов.

Получаем: ує(1; 2), отсюда: (0,5)хє(1; 2).

(0,5)х=1 → (0,5)х=(0,5)0х=0.

(0,5)х=2 → (1/2)x=2 → 2x=21 → -x=1; x=-1. Значит, хє(-1; 0).

Ответ: (-1; 0).

2) 9x-1<3x-1+6.

Представим 9х-1 в виде степени числа 3.

32 (x-1)<3x-1+6. Сделаем замену: 3х-1. Тогда получается квадратное неравенство: у2<y+6. Переносим слагаемые в левую часть.

у2-у-6<0. Находим корни приведенного квадратного уравнения у2-у-6=0. Проверим, возможно ли применить теорему Виета, ведь ею пользуются только, если корни  являются целыми числами. Гарантией этого будет дискриминант, который должен быть полным квадратом некоторого числа. Находим дискриминант D=b2-4ac=1-4∙(-6)=1+24=25=52. Дискриминант является полным квадратом числа 5, поэтому, подбираем корни, пользуясь теоремой Виета: у12=1, у1∙у2=-6. Подходят значения: у1=-2 и у2=3.

Раскладываем левую часть неравенства на линейные множители, получаем:

+2)(у-3)<0. Решаем полученное неравенство методом интервалов.

ує(-2; 3). Возвращаемся к переменной х:

3х-1є(-2; 3), но так как отрицательных значений степень 3х-1 принимать не может, то запишем: 3х-1є(0; 3). Определим интервал значений переменной х.

3х-10 при х-1 → -∞, так как число 3  в степени, стремящейся к минус бесконечности, фактически будет равным нулю, значит, х→ -∞.

Далее, 3х-1=3 → 3х-1=31 → х-1=1 → х=2.

Получили хє(-∞; 2).

Ответ: (-∞; 2).

11.3.4. Решение показательных уравнений, приводящихся к квадратным уравнениям

Многие показательные уравнения заменой переменной сводятся к квадратному уравнению вида: ax2+bx+c=0.

Примеры.

Решить уравнение:

1) 4x+2x+1-3=0. Представим 4x в виде степени с основанием 2.

(22)x+2x∙21-3=0; при возведении степени в степень основание оставляют, а показатели перемножают: 2·х=х·2, поэтому:

(2x)2+2∙2x-3=0;

вводим новую переменную: пусть 2x=y;

y2+2y-3=0.

Дискриминант для четного второго коэффициента: D1=12-1∙(-3)=1+3=4=22 – полный квадрат, поэтому применим теорему Виета: сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

y1+y2=-2, y1∙y2=-3. Подбираем корни: y1=-3, y2=1.

Возвращаемся к переменной х:

1) 2x=-3, нет решений, так как значения показательной функции: Е(у)=(0; +∞). (только положительные числа).

2) 2x=1. Число 1 можно представлять в виде нулевой степени по любому основанию.

2x=20;

x=0.

Ответ: 0.

2) 0,252x-5∙0,52x+4=0.  Решаем аналогично. Представляем 0,252xв виде степени с основанием 0,5.

(0,52)2x-5∙0,52x+4=0;

(0,52x)2-5∙0,52x+4=0.

0,52x=y; ввели новую переменную у и получили приведенное квадратное уравнение:

y2-5y+4=0;

Дискриминант D=b2-4ac=52-4∙1∙4=25-16=9=32 — полный квадрат, применяем теорему Виета: сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

y1+y2=5, y1+y2=4. Корни приведенного квадратного уравнения находим подбором: y1=1, y2=4 и возвращаемся к переменной х:

1) 0,52x=1; число 1 можно представлять в виде нулевой степени по любому основанию.

0,52x=0,50;

2x=0;

x=0.

2) 0,52x=4; приведем степень  0,52 к основанию 2, применив формулу:   (1/a)=а-х 

(1/2)2x=22;

2-2x=22; приравниваем показатели:

— 2x=2 |:(-2)

x=-1.

Ответ: -1; 0.

Представим левую и правую части в виде степеней с основанием 4, используя формулы: а=1/ax  и  ax∙ay=ax+y .

Если равны две степени с одинаковыми основаниями, то основания можно опустить и приравнять показатели степеней. Переносим дробь из правой части равенства в левую и упрощаем левую часть.

Находим дискриминант приведенного квадратного уравнения. Дискриминант является квадратом целого числа, поэтому, подбираем корни, пользуясь теоремой Виета:  сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

11.3.3. Решение простейших показательных неравенств

Простейшими считаются показательные неравенства вида: ax<ay, ax>a.  (ax≤ay, ax≥ay).

Так же, как и при решении простейших показательных уравнений, одинаковые основания степеней опускают, но знак нового неравенства сохраняют, если функция у=ах является возрастающей (а>1); eсли же показательная функция у=ах убывает (0<a<1), то знак нового неравенства меняют на противоположный:

ax<ay → x<y, если a>1; знак сохранен, так как функция возрастает;

ax<ay → x>y,  если 0<a<1; функция убывает – знак поменялся;

ax>ay → x>y, если  a>1; знак сохранен, так как функция возрастает

ax>ay → x<y, если 0<a<1; функция убывает – знак поменялся.

Примеры.

Решить неравенство:

1) 45-2x<0,25.

Представим правую часть в виде: 0,25=(25/100)=(1/4)=4-1;

45-2x<4-1; функция у=4х с основанием 4>1 возрастает на R, поэтому, опуская основания степеней, знак неравенства сохраним:

5-2x<-1;

— 2x<-1-5;

— 2x<-6  |:(-2) при делении обеих частей неравенства на отрицательное число, знак неравенства меняют на противоположный:

x>3.

Ответ: (3; +∞).

2) 0,42х+1≥0,16.

Представим число 0,16 в виде степени числа 0,4. Получаем:

0,42х+10,42; основание степеней – число 0,4 — удовлетворяет условию: 0<0,4<1; поэтому, опускаем основания степеней, а знак неравенства меняем на противоположный:

2х+12;

2х≤2-1;

2х≤1  |:2

x≤0,5.

Ответ: (-∞; 0,5].

3) 23-x+21-x>40.  Применим формулу: ax+y=ax∙ay.  Запишем неравенство в виде:

23∙2-x+21∙2-x>40; Вынесем общий множитель за скобки:

2-x∙(23+21)>40;   упрощаем левую часть:

2-x∙(8+2)>40;

2-x∙10>40   |:10

2-x>4;

2-x>22;  основание степени — число 2>1, значит, знак неравенства сохраняем:

— x>2  |:(-1) при делении обеих частей неравенства на отрицательное число — знак неравенства меняют на противоположный:

x<-2.

Ответ: (-∞; -2).

4) 3x+2+3x+1+3x≤39. Применяем формулу:  ax∙ay=ax+y

3x∙32+3x∙31+3x≤39; вынесем общий множитель за скобки:

3x∙(32+31+1)≤39; упрощаем левую часть неравенства:

3x∙(9+3+1)≤39;

3x∙13≤39  |:13

3x≤3;

3x≤31; Показательная функция с основанием 3 (3>1) является возрастающей, поэтому, знак неравенства сохраним:

x≤1.

Ответ: (-∞; 1].

11.3.2. Решение простейших показательных уравнений

Уравнения, содержащие переменную в показателе степени, называются показательными уравнениями.

Простейшие показательные уравнения — это уравнения вида: ax=ay. Отсюда следует равенство: х=у. В самом деле, степени с одинаковыми основаниями могут быть равными только в том случае, если равны показатели этих степеней.

Примеры.

Решить уравнение:

1) 5x=125.  Представим число 125 в виде степени числа 5:

5x=53; Степени равны, их основания равны, значит, и показатели степеней будут равны:

x=3.

2) 4x=32. Представим левую и правую части в виде степеней с основанием 2:

(22)x=25; используем формулу возведения степени в степень: (ax)y=axy  

22x=25;

2x=5  |:2

x=2,5.

 3) 32x-1=81. Число 81 представим в виде степени числа 3:

32x-1=34;  приравняем показатели степеней с одинаковыми основаниями:

2x-1=4;  решаем простейшее линейное уравнение:

2x=4+1;

2x=5  |:2;

x=2,5.

 

К правой части применяем формулу: (a/b)-x=(b/a)x. Получим равенство степеней с одинаковыми основаниями.

Приравниваем показатели степеней и находим х из полученного линейного уравнения.

 

 

 

 

 

Приравняем показатели степеней с одинаковыми основаниями.

Переносим степень из правой части уравнения в левую.

Вынесли общий множитель (2х-6) за скобки. Произведение двух или нескольких множителей равно нулю, если один из множителей равен нулю, а другие при этом значении не теряют смысла. Содержимое каждой из скобок приравниваем к нулю и решаем простейшие уравнения.

 

6) 7∙5x-5x+1=2∙53.

Показатели степеней складываются, если степени перемножаются ( ax∙ay=ax+y ), поэтому:

7∙5x-5x∙51=2∙53;

5x(7-5)=2∙53;  вынесли общий множитель за скобки.

5x∙2=2∙53     |:2

5x=53;  отсюда следует:

x=3.

7) 3x+2+4∙3x+1=21.  Применим формулу: ax+y=ax∙ay  (При умножении степеней с одинаковыми основаниями основание оставляют прежним, а показатели складывают):

3x∙32+4∙3x∙31=21; вынесем общий множитель за скобки:

3x(9+12)=21;

3x∙21=21  |:21

3x=1; число 1 можно представлять в виде нулевой степени с любым основанием.

3x=30;

x=0.

51+2x+52x+3=650.  Решаем аналогично.

51∙52x+52x∙53=650;

52x(5+125)=650;

52x∙130=650   |:130

52x=5; приравняем показатели равных степеней с основаниями 5.

2x=1  |:2

x=0,5.

11.3.1. Показательная функция, ее свойства и график



style="display:block"
data-ad-client="ca-pub-8602906481123293"
data-ad-slot="8834522701"
data-ad-format="auto">

  • Функцию вида y=ax, где а>0, a≠1, х – любое число, называют показательной функцией.
  • Область определения показательной функции: D (y)=R – множество всех действительных чисел.
  • Область значений показательной функции: E (y)=R+ - множество всех положительных чисел.
  • Показательная функция  y=ax возрастает при a>1.
  • Показательная функция y=ax убывает при 0<a<1.

Справедливы все свойства степенной функции:

  • а0=1  Любое число (кроме нуля) в нулевой степени равно единице.
  •  а1=а  Любое число в первой степени равно самому себе.
  •  ax∙ay=ax+y   При умножении степеней с одинаковыми основаниями основание оставляют прежним, а показатели складывают.
  •  ax:ay=ax- y  При делении степеней с одинаковыми основаниями основание оставляют прежним, а из показателя степени делимого вычитают показатель степени делителя.
  • (ax)y=axy   При возведении степени в степень основание оставляют прежним, а показатели перемножают
  •  (a∙b)x=ax∙by   При возведении произведения в степень возводят в эту степень каждый из множителей.
  • (a/b)x=ax/by  При возведении дроби в степень возводят в эту степень и числитель и знаменатель дроби.
  •   а=1/ax
  •  (a/b)-x=(b/a)x.

Примеры.

1) Построить график функции y=2xНайдем значения функции

при х=0, х=±1, х=±2, х=±3.

x=0, y=20=1;                   Точка А.

x=1, y=21=2;                   Точка В.

x=2, y=22=4;                   Точка С.

x=3, y=23=8;                   Точка D.              

x=-1, y=2-1=1/2=0,5;       Точка K.

x=-2, y=2-2=1/4=0,25;     Точка M.

x=-3, y=2-3=1/8=0,125;   Точка N.

Большему  значению аргумента х соответствует и большее значение функции у. Функция y=2x возрастает на всей области определения D (y)=R, так как основание функции 2>1.

2) Построить график функции y=(1/2)x. Найдем значения функции

при х=0, х=±1, х=±2, х=±3.

x=0, y=(½)0=1;                  Точка A.

x=1, y=(½)1=½=0,5;          Точка B.

x=2, y=(½)2=¼=0,25;        Точка C.

x=3, y=(½)3=1/8=0,125;    Точка D.

x=-1, y=(½)-1=21=2;          Точка K.

x=-2, y=(½)-2=22=4;          Точка M.

x=-3, y=(½)-3=23=8;          Точка N.

 

Большему значению аргумента х соответствует меньшее значение функции y. Функция y=(1/2)убывает на всей своей области определения: D (y)=R, так как основание функции  0<(1/2)<1.

3) В одной координатной плоскости построить графики функций: 

y=2x, y=3x, y=5x, y=10x. Сделать выводы.

График функции у=2х мы уже строили, графики остальных функций строим аналогично, причем, достаточно будет найти значения функций при х=0 и при х=±1.

Переменная х может принимать любое значение (D (y)=R), при этом значение у всегда будет больше нуля  (E (y)=R+).

Графики всех данных функций пересекают ось Оу в точке (0; 1), так как любое число в нулевой степени равно единице; с осью Ох графики не пересекаются, так как положительное число в любой степени не может быть равным нулю. Чем больше основание а (если a>1) показательной функции у=ах, тем ближе расположена кривая к оси Оу.

Все  данные функции являются возрастающими, так как большему значению аргумента соответствует и большее значение функции.

 

4) В одной координатной плоскости построить графики функций:

y=(1/2)x, y=(1/3)x, y=(1/5)x, y=(1/10)x. Сделать выводы.

Смотрите построение графика функции y=(1/2)x выше, графики остальных функций строим аналогично, вычислив их значения при х=0 и при х=±1.

Переменная х может принимать любое значение: D (y)=R, при этом область значений функции: E (y)=R+.

Графики всех данных функций пересекают ось Оу в точке (0; 1), так как любое число в нулевой степени равно единице; с осью Ох графики не пересекаются, так как положительное число в любой степени не может быть равным нулю.

Чем меньше основание а (при 0<a<1) показательной функции у=ах, тем ближе расположена кривая к оси Оу.

Все  эти функции являются убывающими, так как большему значению аргумента соответствует меньшее значение функции.

Решить графически уравнения:

1) 3x=4-x.

В одной координатной плоскости построим графики функций: у=3х и у=4-х.

 

Графики пересеклись в точке А(1; 3).

 

Ответ: 1.

 

 

 

 

2) 0,5х=х+3.

 

В одной координатной плоскости строим графики функций: у=0,5х

(y=(1/2)x )

 и у=х+3.

Графики пересеклись в точке В(-1; 2).

Ответ: -1.

 

 

Найти область значений функции: 1) y=-2x; 2) y=(1/3)x+1; 3) y=3x+1-5.

Решение.

 1) y=-2

Область значений показательной функции y=2x – все положительные числа, т.е.

0<2x<+∞. Значит, умножая каждую часть двойного неравенства на (-1), получаем:

— ∞<-2x<0.

Ответ: Е(у)=(-∞; 0).

 2) y=(1/3)x+1;

0<(1/3)x<+∞, тогда, прибавляя ко всем частям двойного неравенства число 1, получаем:

0+1<(1/3)x+1<+∞+1;

1<(1/3)x+1<+∞.

Ответ: Е(у)=(1; +∞).

 3) y=3x+1-5.

Запишем функцию в виде: у=3х∙3-5.

0<3x<+∞;   умножаем все части двойного неравенства на 3:

0∙3<3x3<(+∞)∙3;

0<3x∙3<+∞;  из всех частей двойного неравенства вычитаем 5:

0-5<3x∙3-5<+∞-5;

— 5<3x∙3-5<+∞.

Ответ: Е(у)=(-5; +∞).

Смотрите Карту сайта, и Вы найдете нужные Вам темы!

Страница 2 из 41234
Архивы
Наверх